to verify the algebraic identity
(a+b+c)whole power 2 =a2+b2+c2+2ab+2bc+2ca
Answers
Answered by
43
(a+b+c)^2= (a+b+c)(a+b+c)=a(a+b+c)+b(a+b+c)+c(a+b+c)
⇒a^2+ab+ac+ab+b^2+bc+ac+bc+c^2
⇒a^2+b^2+c^2+2ab+2bc+2ca
Hence proved
⇒a^2+ab+ac+ab+b^2+bc+ac+bc+c^2
⇒a^2+b^2+c^2+2ab+2bc+2ca
Hence proved
divyamanu:
((a+b)+(c))^2=(a+b)^2+2(a+b)(c)+(c)^2=a^2+2ab+b^2+2ac+2bc+c^2
Answered by
7
Let (x + y ) = t then,
(x + y + z) = (t +z) ²
= ( t² + 2tz + t²)------------------ ( using identity I)
= (x +y )² + 2(x+y)z + z²----------( sub the value t )
= x² + 2xy + y² = 2xz +2yz + z²----------(identity I)
x²+y²+z²+2xy+2xy+ 2yz+2 zx
(x + y + z) = (t +z) ²
= ( t² + 2tz + t²)------------------ ( using identity I)
= (x +y )² + 2(x+y)z + z²----------( sub the value t )
= x² + 2xy + y² = 2xz +2yz + z²----------(identity I)
x²+y²+z²+2xy+2xy+ 2yz+2 zx
Similar questions
Science,
8 months ago
Physics,
8 months ago
Math,
1 year ago
English,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago
Environmental Sciences,
1 year ago