to verify the identity(a+b)^3=a^3+3ab^2+3ab^2+b^3
Answers
Answered by
5
(a+b)³ = a³+3a²b+3ab²+b³
Let's solve LHS. →
(a+b)³
→ (a+b)(a+b)(a+b)
→ a(a+b)(a+b)+b(a+b)(a+b)
→ (a²+ab)(a+b)+(ab+b²)(a+b)
→ a(a²+ab)+b(a²+ab)+a(ab+b²)+b(ab+b²)
→ a³+a²b+a²b+ab²+a²b+ab²+ab²+b³
→ a³+3a²b+3ab²+b³
Hence , LHS = RHS
Verified
_________________________________
Let's solve LHS. →
(a+b)³
→ (a+b)(a+b)(a+b)
→ a(a+b)(a+b)+b(a+b)(a+b)
→ (a²+ab)(a+b)+(ab+b²)(a+b)
→ a(a²+ab)+b(a²+ab)+a(ab+b²)+b(ab+b²)
→ a³+a²b+a²b+ab²+a²b+ab²+ab²+b³
→ a³+3a²b+3ab²+b³
Hence , LHS = RHS
Verified
_________________________________
Answered by
6
Hi friend,
Need to prove:-
(a+b)³ = a³+3a²b+3ab²+b³
==========================
Take LHS:-
(a+b)³
= (a+b)(a+b)(a+b)
= (a+b)²(a+b)
= {a²+b²+2ab} (a+b)
= a²(a+b) + b²(a+b) + 2ab(a+b)
= a³+a²b+ab²+b³+2a²b+2ab²
= a³+b³+3a²b+3ab²
= a³+3a²b+3ab²+b³
LHS = RHS
Hence verified!
Hope it helps
Need to prove:-
(a+b)³ = a³+3a²b+3ab²+b³
==========================
Take LHS:-
(a+b)³
= (a+b)(a+b)(a+b)
= (a+b)²(a+b)
= {a²+b²+2ab} (a+b)
= a²(a+b) + b²(a+b) + 2ab(a+b)
= a³+a²b+ab²+b³+2a²b+2ab²
= a³+b³+3a²b+3ab²
= a³+3a²b+3ab²+b³
LHS = RHS
Hence verified!
Hope it helps
Similar questions