Math, asked by s26apie961, 3 months ago

Today, everything at a store is on sale. The store offers a 20% discount. The regular price of a T-shirt is $18. What is the discount price. Explain your reasoning.

Plz help me!

Answers

Answered by ImperialGladiator
10

Answer:

Discount price is $15.6

Explanation :

Question says that,

A sale is allowing 20% of discount in an item.

Find the discount price of a T-shirt worths $18.

Discount price :

→ M. P. (marked price) - discount

Where,

  • M. P. is $18
  • And discount allowed is 20%

So,

→ 18 - (20% of 18)

→ 18 - 3.6

→ 15.6

Hence, the discount price is $15.6

Answered by mathdude500
5

\begin{gathered}\begin{gathered}\bf \: Given \:  - \begin{cases} &\sf{Marked \:  Price \: of \: T-shirt \: is \: 18  \: \$} \\ &\sf{discount \: is \: 20 \: \%} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To \: find \:  - \begin{cases} &\sf{discounted \: price \: of \: T-shirt}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{\green{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \bigstar \:  \boxed{ \blue{ \bf \: S.P \:  =  \: \dfrac{(100 - Discount\%) \times M.P}{100} }}

where,

  • S.P means Selling Price

  • M.P. means Marked Price

\large\underline\purple{\bold{Solution :-  }}

Given that

  • Marked Price of T - Shirt = $ 18

  • Discount on T - Shirt = 20 %

So,

  • Selling Price of T - Shirt is given by

\rm :\implies\:S.P \:  =  \: \dfrac{(100 - Discount\%) \times M.P}{100}

\rm :\implies\:S.P \:  = \: \dfrac{(100 - 20) \times 18}{100}

\rm :\implies\:S.P \:  = \: \dfrac{80 \times 18}{100}

 \boxed{ \pink{\rm :\implies\:S.P \:  = \:  \$ \: 14.4}}

Or

Alter Method :-

We know,

 \bigstar{ \boxed{ \blue{ \bf \: Discount = \dfrac{Discount\%}{100}  \times S.P}}}

So,

\rm :\implies\:Discount \:  =\dfrac{20}{100}  \times 18

\rm :\implies\:Discount \:  = \:  \$ \: 3.6

Hence,

  • Selling Price of T - Shirt is given by

 \boxed{ \blue{ \rm \: Selling  \: Price = Marked  \: Price - Discount}}

\rm :\implies\:Selling \:  Price \:  = \: 18 - 3.6

 \boxed{ \pink{\rm :\implies\:S.P \:  = \:  \$ \: 14.4}}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{100+Gain \: \% \: (or) \: Loss\:\%}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions