Math, asked by NITESH761, 1 month ago

Today's interesting but hard geometric Question.
find the area of blue region.
it is a square of side length of 1cm.
don't scam for 5 points.​

Attachments:

Answers

Answered by foreduonlyunderstand
0

Answer:

0.215cm²

if it wrong please tell me

Attachments:
Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Let the first square is represented as ABCD with AB = 1 cm.

So, Diameter of circle, d = 1 cm

So, Radius of circle, r = 1/2 cm

Hence, the area of first region is

\rm :\longmapsto\:A_1 = A_{square} \:  -  \: A_{circle}

\rm \:  =  \:  \:  {(1)}^{2} - \pi {\bigg(\dfrac{1}{2} \bigg) }^{2}

\rm \:  =  \:  \: 1 - \dfrac{\pi}{4}  \:

\boxed{ \bf{ A_1 \:  =  \:  \: 1 - \dfrac{\pi}{4}  \:  {cm}^{2} }}

Now,

Consider Region 2,

Let the square of this region is represented as EFGH such that diagonal HF = 1 cm

Let assume that side of square EFGH is 'x' cm

So, In right triangle FGH

By using Pythagoras Theorem,

\rm :\longmapsto\: {x}^{2} +  {x}^{2}  =  {1}^{2}

\rm :\longmapsto\: 2{x}^{2}   =  {1}^{}

\rm :\longmapsto\: {x}^{2} = \dfrac{1}{2}

\rm :\longmapsto\: {x}^{} = \dfrac{1}{ \sqrt{2} }  \: cm

So,

\rm :\longmapsto\:Side \: of \: square \:  = \dfrac{1}{ \sqrt{2} }

and

\rm :\longmapsto\:Radius \: of \: circle \:  = \dfrac{1}{ 2\sqrt{2} }

Hence, Area of second region is

\rm :\longmapsto\:A_2 = A_{square} \:  -  \: A_{circle}

\rm \:  =  \:  \:  {\bigg(\dfrac{1}{ \sqrt{2} }  \bigg) }^{2} - \pi {\bigg(\dfrac{1}{2 \sqrt{2} } \bigg) }^{2}

\rm \:  =  \:  \: \dfrac{1}{2}  - \dfrac{\pi}{8}  \:

\boxed{ \rm{A_2 \:  =  \:  \: \dfrac{1}{2}  - \dfrac{\pi}{8}  \:  {cm}^{2} }}

Consider, Region 3,

Let the square of this region is represented as IJKL such that diagonal JL = 1 / sqrt(2) cm

Let assume that side of square IJKL is 'y' cm

So, In right triangle JKL

By using Pythagoras Theorem,

\rm :\longmapsto\: {y}^{2} +  {y}^{2}  =  {\bigg(\dfrac{1}{ \sqrt{2} }  \bigg) }^{2}

\rm :\longmapsto\:2 {y}^{2}   =  \dfrac{1}{ 2 }

\rm :\longmapsto\: {y}^{2}   =  \dfrac{1}{ 4 }

\rm :\longmapsto\: {y}^{}   =  \dfrac{1}{ 2 }

So,

\rm :\longmapsto\:Side \: of \: square \:  = \dfrac{1}{2 }

and

\rm :\longmapsto\:Radius \: of \: circle \:  = \dfrac{1}{4}

Hence, Area of third region is

\rm :\longmapsto\:A_3 = A_{square} \:  -  \: A_{circle}

\rm \:  =  \:  \:  {\bigg(\dfrac{1}{ 2 }  \bigg) }^{2} - \pi {\bigg(\dfrac{1}{4 } \bigg) }^{2}

\rm \:  =  \:  \: \dfrac{1}{4}  - \dfrac{\pi}{16}  \:

\boxed{ \rm{A_3 \:  =  \:  \: \dfrac{1}{4}  - \dfrac{\pi}{16}  \:  {cm}^{2} }}

So, goes on like this

The total area of blue region is

\rm \:  =  \:  \: A_1 + A_2 + A_3 +  -  -  -

\rm \:  =  \:  \: \bigg(1 - \dfrac{\pi}{4}  \bigg) + \bigg(\dfrac{1}{2}  - \dfrac{\pi}{8}  \bigg) + \bigg(\dfrac{1}{4}  - \dfrac{\pi}{16}\bigg) +  -  -  -

can be re-arranged as

\rm \:  =  \bigg(1 + \dfrac{1}{2}  + \dfrac{1}{4}  +  -  -  -  \bigg) - \bigg(\dfrac{\pi}{4}  + \dfrac{\pi}{8}  + \dfrac{\pi}{16}  +  -  -  - \bigg)

So, these two forms an infinite GP series.

We know,

Sum of infinite geometric sequence is given by

\boxed{ \rm{ S_ \infty  \:  =  \:  \frac{a}{1 - r} , \: provided \: that \:  |r| < 1}}

where,

a is first term of GP series

r is the common ratio of GP series.

So, using this formula, we get

\rm \:  =  \:  \: \dfrac{1}{1 - \dfrac{1}{2} }  - \pi \: \dfrac{\dfrac{1}{4} }{1 - \dfrac{1}{2} }

\rm \:  =  \:  \: \dfrac{1}{ \dfrac{1}{2} }  - \pi \: \dfrac{\dfrac{1}{4} }{\dfrac{1}{2} }

\rm \:  =  \:  \: 2 - \dfrac{\pi}{2}

\rm \:  =  \:  \: 2 - \dfrac{22}{14}

\rm \:  =  \:  \: 2 - \dfrac{11}{7}

\rm \:  =  \:  \:  \dfrac{14 - 11}{7}

\rm \:  =  \:  \:  \dfrac{3}{7}  \:  {cm}^{2}

Attachments:
Similar questions