Math, asked by Copythat42, 1 day ago

Today's Question :- \looparrowright {\sin}^{2}30° \: { \cos}^{2}45° + 4 {\tan}^{2}30° + \frac{1}{2} { \sin}^{2}90°↬sin 2 30°cos 2 45°+4tan 2 30°+ 2 1 ​ sin 2 90° ❍ Solve it no direct answers. ❍ For Moderator, Maths Aryabhatta and Best Users. ❍ All the best!!! ​

Answers

Answered by SANDHIVA1974
2

Answer:

\huge { \underline\red {\bf{Solution}}}

Step-by-step explanation:

\begin{array}{l} \sin ^{2} 30^{\circ} \cos ^{2} 45^{\circ}+4 \tan ^{2} 30^{\circ}+\frac{1}{2} \sin ^{2} 90^{\circ}-2 \cos ^{2} 90^{\circ}+\frac{1}{24} \cos ^{2} 0^{\circ} \\ =\left(\frac{1}{2}\right)^{2} \times\left(\frac{1}{\sqrt{2}}\right)^{2}+4\left(\frac{1}{\sqrt{3}}\right)^{2}+\frac{1}{2}(1)^{2}-2(0)^{2}+\frac{1}{24}(1)^{2} \end{array}

Open square</p><p>=\frac{1}{4} \times \frac{1}{2}+4 \times \frac{1}{3}+\frac{1}{2}+\frac{1}{24} \\  \\ </p><p>Multiply</p><p>=\frac{1}{8}+\frac{4}{3}+\frac{1}{2}+\frac{1}{24} \\  \\ </p><p>Take LCM</p><p>\begin{array}{l} =\frac{3+32+12+1}{24} \\ =\frac{48}{24} \\ =2 \end{array}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions