ton and the bottom of a 7 m tall building from the top of a
The angles of depression of the top and the bottom of a
tower are 45 and 60", respectively. Find the height of the tower.
Answers
Answered by
0
Answer:
In ΔAEC\Delta AECΔAEC
AECE=tan45∘\frac{AE}{CE}=\tan 45^{\circ}CEAE=tan45∘
AE=CEAE=CEAE=CE ----- (i)
In ΔABD\Delta ABDΔABD
ABBD=tan60∘\frac{AB}{BD}=\tan 60^{\circ}BDAB=tan60∘
AE+EBBD=3\frac{AE+EB}{BD}=\sqrt3BDAE+EB=3
AE+7CE=3\frac{AE+7}{CE}=\sqrt3CEAE+7=3
AE+7AE=3\frac{AE+7}{AE}=\sqrt3AEAE+7=3
--- from (i)
AE=73−1AE=\frac{7}{\sqrt3-1}AE=3
−17
So, height of the tower =AB=AB=AB
=73−1+7=\frac{7}{\sqrt3-1}+7=3
−17+7
=72(3+3) m=\frac{7}{2}(3+\sqrt3) \;m=27(3+3
)m
Step-by-step explanation:
Attachments:
Similar questions