Math, asked by Anonymous, 4 hours ago

Topic :- Applications of Trigonometry

An aeroplane is flying horizontally 1km above the ground is observed at an elevation of 60°. If after 10 seconds the elevation is ovserved at 30°. The uniform speed per hour of aeroplane is


 \red \sf \: explain \: diagram \: clearly \: ..

Answers

Answered by rsagnik437
138

Answer :-

Speed of the aeroplane is 240√3 km/h .

From the diagram :-

Let BX be the horizontal ground and let "B" be the point of observation. Let "A" and "E" be the two positions of the aeroplane.

Let AC ⊥ BX and ED ⊥ BX, then we have :-

∠CBA = 60° ; ∠DBE = 30° ; AC = ED = 1 km

Solution :-

From right Δ BCA, we have :-

⇒ cot 60° = BC/AC

⇒ 1/√3 = BC/1

⇒ BC = 1/√3 km

Now, from right ∆ BDE :-

⇒ tan 30° = ED/BD

⇒ 1/√3 = 1/BD

⇒ BD = √3 km

________________________________

⇒ CD = BD - BC

⇒ CD = √3 - 1/√3

⇒ CD = (3 - 1)/√3

⇒ CD = 2/√3

⇒ CD = 2/√3 × √3/√3

⇒ CD = (2√3)/3 km

So, the aeroplane covers (2√3)/3 km in 10 seconds.

(10 sec = 1/360 hr) . Thus, speed of the aeroplane :-

Speed = Distance/Time

⇒ Speed = (2√3)/3 ÷ (1/360)

⇒ Speed = (2√3)/3 × 360

⇒ Speed = 2√3 × 120

Speed = 2403 km/h

Attachments:
Answered by Vikramjeeth
20

✰ Concept:

In this question, we will use the concept of "trigonometry" to get the required answer. Let's starts :D

✰ The Diagram:

Let AC be the height of the aeroplane from the ground i.e. 1 km also, let BD be the height of the aeroplane from the group after 10 seconds.

Let,

E be the observer.

So,

∠ AEC = 60° and ∠ BED = 30°.

✰ Solution:

We know that,

  • tan60 = √3

Therefore,

\begin{gathered} : \implies \sf tan AEC = \frac{AC}{EC} \\ : \implies \sf \: tan30 = \frac{1}{EC} \: \: \: \\ : \implies \sf \: \sqrt{3} = \frac{1}{EC} \: \: \: \: \: \: \: \: \\ : \implies \sf EC = \frac{1}{ \sqrt{3} } \: \: \: \: \: \: \: \: \: \end{gathered}

\begin{gathered} : \implies \sf \: tan30 = \frac{BD}{ED} \\ : \implies \sf \: \frac{1}{ \sqrt{3} } = \frac{1}{ED } \: \: \: \\ : \implies \sf \: ED = \sqrt{3} \: \: \: \: \: \: \end{gathered}

Now,

We will find the distance between EC and ED i.e. the measure of CD.

\begin{gathered}: \implies \sf \: CD = ED - EC \: \: \: \: \: \: \: \: \: \\ : \implies \sf \: CD = \sqrt{3} - \frac{1}{ \sqrt{3} } \: \: \: \: \: \: \: \: \\ : \implies \sf \: CD = \frac{ \sqrt{3} \times \sqrt{3} - 1 }{ \sqrt{3} } \\ : \implies \sf \: CD = \frac{3 - 1}{ \sqrt{3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ : \implies \sf \: CD = \frac{2}{ \sqrt{3} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \end{gathered}

Now,

We have already been provided with the time i.e. 10 seconds and we have also found the distance. So we can easily calculate the speed using the formula for speed i.e.,

\bigstar \: \underline{ \underline{ \boxed{ \sf \: speed = \frac{distance}{time} }}}

\begin{gathered} : \implies \sf \: speed = \frac{ \frac{2}{ \sqrt{3} } }{ \frac{1}{360} } \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \\ : \implies \sf \: speed = 240 \sqrt{3} \: km \: hr ^{ - 1} \end{gathered}

\boxed{ \sf \green{\therefore \: speed \: of \: the \: aeroplane \: is \: 240√3 km/hr}}

# Happy Learning .

Attachments:
Similar questions