Math, asked by BrainIyQuestioner, 5 hours ago

Topic - Arthematic Progression
@ Moderators
@ Stars
@ Best Users


The sum of 5th term and 7th term of an A.P is 52 and the 10 th term is 46. Find A.P?​

Answers

Answered by SparklingBoy
147

♣ Given :-

For an A.P.

  • 5th Term + 7th Term = 52

  • 10th Term = 46

-----------------------

♣ To Find :-

  • The Corresponding A.P.

-----------------------

♣ Formula For nth Term :-

\large \mathtt{a_n= a + (n - 1)d}

Where :

  • a = First term

  • d = Common difference

-----------------------

♣ Solution -

We Have ,

 \large \sf{a_{5} +a_{7} = 52}\\ \\ \large \sf{ = a + 4d + a + 6d= 52}\\ \\ \large \sf2a + 10d \: \: - - - (1)\\ \\ \large \sf{a_{11} = a + 10d = 46} \\ \\

♠ Multiplying Both Sides by 2 :

\large :\longmapsto\sf 2a + 20d = 92\: \: - - - (2) \\

Subtracting (1) From (2) , We get :-

\sf10d = 40 \\ \\ \sf d = \cancel{\frac{40}{10} }\\ \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf d = 4} }}}

♠ Putting Value of d in (1) :

:\longmapsto \sf2a + 10 \times 4 = 52 \\ \\ :\longmapsto \sf 2a = 12 \\ \\ :\longmapsto \sf a = \cancel\dfrac{12}{2} \\ \\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf a = 6} }}}

We Know ,

A.P. Having First Term a and common difference d is is of the Form :

a , a + d , a + 2d , . . . .

Hence ,

The Required A.P is :

\pink{\huge \mathfrak{6 , 10,14,\: . \: . \: .}}

 \LARGE\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \Huge \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by rohithkrhoypuc1
82

Answer:

\large{\purple{\ddot{\Mathsdude}}}

☆●Answered by Rohith kumar maths dude: -

In this question given that

The sum of 5th and 7th term is 52.

Hence,

a+4d+a+6d=52 (From given)

=2a+10d=52 (i)

And here also given 10th term is 46.

We can written it as ,

a+9d=46. (ii)

After multiplying the equation by 2 in ii) equation we get,

2a+18d=92 (ii) .

Solving the equation i) and ii)

we get,

8d=40

d=40/8

d=5.

And substituting the value of d in i) equation

we get,

2a+(10×5)=52

2a=52-50

2a=2

a=2/2

a=1.

Hence , the required Ap"s are

1,6,11,16,21,26,31, ....etc.

Hope it helps u mate

Thank you.

Similar questions