Topic - Arthematic Progression
@ Moderators
@ Stars
@ Best Users
The sum of 5th term and 7th term of an A.P is 52 and the 10 th term is 46. Find A.P?
Answers
Answered by
147
♣ Given :-
For an A.P.
- 5th Term + 7th Term = 52
- 10th Term = 46
-----------------------
♣ To Find :-
- The Corresponding A.P.
-----------------------
♣ Formula For nth Term :-
Where :
- a = First term
- d = Common difference
-----------------------
♣ Solution -
We Have ,
♠ Multiplying Both Sides by 2 :
♠ Subtracting (1) From (2) , We get :-
♠ Putting Value of d in (1) :
We Know ,
A.P. Having First Term a and common difference d is is of the Form :
a , a + d , a + 2d , . . . .
Hence ,
The Required A.P is :
-----------------------
Answered by
82
Answer:
☆●Answered by Rohith kumar maths dude: -
☆In this question given that
☆The sum of 5th and 7th term is 52.
☆Hence,
a+4d+a+6d=52 (From given)
=2a+10d=52 (i)
▪And here also given 10th term is 46.
▪We can written it as ,
a+9d=46. (ii)
☆After multiplying the equation by 2 in ii) equation we get,
2a+18d=92 (ii) .
☆Solving the equation i) and ii)
☆we get,
8d=40
d=40/8
d=5.
☆And substituting the value of d in i) equation
we get,
2a+(10×5)=52
2a=52-50
2a=2
a=2/2
a=1.
▪Hence , the required Ap"s are
●1,6,11,16,21,26,31, ....etc.
☆Hope it helps u mate
☆Thank you.
Similar questions