Math, asked by llNidhill, 18 days ago

Topic: Circles
Class: 9th

 \sf \red{Question:}
Prove that :
The angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle.

Answers

Answered by Anonymous
56

 \star \; {\underline{\boxed{\red{\pmb{\frak{ \; Given \; :- }}}}}}

  • We have been given a Circle with centre O .
  • Arc AB of the Circle subtends ∠AOB and ∠APB at the point Q remaining part of Circle .

 \\ {\rule{200pt}{3pt}}

 \star \; {\underline{\boxed{\green{\pmb{\frak{ \; To \; Prove \; :- }}}}}}

  • ∠AOB = 2 ∠APB

 \\ {\rule{200pt}{3pt}}

 \star \; {\underline{\boxed{\orange{\pmb{\frak{ \; ProoF \; :- }}}}}}

Here :-

 {\underline{\textsf{\textbf{ In \; ∆AOP \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { AO = OP \qquad \; \bigg( Radius \; of \; Same \; Circle \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠OPA = ∠OAP \qquad \; \bigg( Angle \; Opp. \; to \; Equal\; Sides \; are \; Equal \bigg) } \\ \end{gathered}

So :-

 \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠OPA = ∠OAP }}}}} \; {\pink{\bigstar}}

 \\

Now :-

 {\underline{\textsf{\textbf{ In \; ∆BOP \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { BO = OP \qquad \; \bigg( Radius \; of \; Same \; Circle \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠POB = ∠PBO \qquad \; \bigg( Angle \; Opp. \; to \; Equal\; Sides \; are \; Equal \bigg) } \\ \end{gathered}

So :-

 \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠POB = ∠PBO }}}}} \; {\purple{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

 {\underline{\textsf{\textbf{ By \; Exterior \; Angle \; Property \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠AOQ = ∠OPA + ∠OAP } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠AOQ = ∠OPA + ∠OPA } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠AOQ = 2 ∠OPA } \\ \end{gathered}

So :-

 \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠AOQ = 2 ∠OPA }}}}} \; {\red{\bigstar}}

 \\

 \begin{gathered} \dashrightarrow \; \; \sf { ∠BOQ = ∠BOP + ∠PBO } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠BOQ = ∠BOP + ∠BOP } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠BOQ = 2 ∠BOP } \\ \end{gathered}

So :-

 \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠BOP = 2 ∠BOP }}}}} \; {\color{darkblue}{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

 {\underline{\textsf{\textbf{ Measure \; of \;  ∠POQ  \; :- }}}}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠POQ = 2 ∠OPA + 2 ∠BOP } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠POQ = 2 \bigg( ∠OPA + ∠BOP \bigg) } \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { ∠POQ = 2 ∠APB } \\ \end{gathered}

So :-

 \implies \; \; {\underline{\boxed{\pmb{\sf{ ∠POQ = 2 ∠APB }}}}} \; {\orange{\bigstar}}

 \\ \qquad{\rule{150pt}{1pt}}

 \therefore \; We have Proved that the angle subtended by an arc at the centre is double the angle subtended by it at any point on the remaining part of the circle .

 \\ {\underline{\rule{300pt}{9pt}}}

Attachments:
Similar questions