Topic : Circles
If (2,0) , (0,1) , (4,5) & (0,c) are concyclic then find c.
if you answer i will make your answer as brainalist answer...
Answers
Answer:
→Let the equation of the required circle,
x²+y²+2gx+2fy+c=0→1
→Since equation 1 is passing through the point (2,0)
2²+0²+4g+0f+c=0
4g+c=-4→2
→Since equation 1 is passing through the point (0,1)
0²+1²+0g+2f+c=0
2f+c=-1→3
→Since equation 1 is passing through the point (4,5)
4²+5²+8g+10f+c=0
8g+10f+c=-41→4
From the equations,2 and 3
4g+c=-4
2f+c=-1
on solving, 4g-2f=-3→5
From the equations,3 and 4
2g+c=-1
8g+10f+c=-41
on solving,-g-f=5→6
Now, solve equation 5 and 6
g f 1
-2 3 4 -2
-1 -5 -1 -1
g/10+3=f/-3+20=1/-6
g=-13/6, f=-17/6
Substitute the values of g,f in equation 2
4g+c=-4
4(-13/6)+c=-4
3c-26=-12
3c=14
c=14/3
Therefore, Equation of the circle is,
x²+y²+2x(-13/6)+2y(-17/6)+14/3=0
3x²+3y²-13x-17y+14=0
Given four points are concyclic
(0,C) lies on the circle.
3×0²+3(c²)-13×0-17c+14=0
3c²-17c+14=0
3c²-3c-14c+14=0
3c(c-1)-14(c-1)=0
c=1, c=14/3
Hope it helps you frnd.......