Math, asked by alpz1004, 11 months ago

Topic: "Circles in the coordinate plane"
State the coordinates of the center and the measure of the radius; x^2+ y^2-16x=0.
What I know about my problem is that the formula for circles with center (h, k) and radius r is: (x-h)2+(y-k)2=r2

I know that I have to work backwards because the problem gives us the equation but i don't know how to solve it to get the center coordinates and the radius.

Answers

Answered by BrainlyPopularman
32

Answer:

TO GET THE COORDINATE OF CENTER AND RADIUS:

 {x}^{2}  +  {y}^{2}  - 16x = 0

ADD 64 IN BOTH SIDE

 {x}^{2}   - 16x + 64 +  {y}^{2}  = 64

 {(x - 8)}^{2}  +  {y}^{2}  =  {8}^{2}

NOW COMPARE WITH

 {(x - h)}^{2}  +  {(y - k)}^{2}  =  {r}^{2}

SO ,

h = 8 \:</strong><strong>,</strong><strong>  \: k = 0 \:  \: and \:  \: r = 8

CENTER =(8,0) AND RADIUS = 8 UNIT

Answered by BrainlyConqueror0901
32

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Coordinate\:of\:centre=(8,0)}}}

\green{\tt{\therefore{Radius=8\:units}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given : }} \\  \tt:  \implies Eqn \: of \: circle =  {x}^{2}  +  {y}^{2}  - 16x = 0 \\  \\  \red{\underline \bold{To \: Find : }} \\  \tt:  \implies Coordinate \: of \: centre = ? \\  \\   \tt:  \implies Radius \: of \: circle = ?

• According to given question :

 \bold{As \: we \: know \: that}   \\ \tt:  \implies  {x}^{2}  +  {y}^{2}  + 2gx + 2fy + c = 0 \\  \\   \tt \circ  \: Eqn \: of \: standard \: circle \\  \\  \tt:   \implies  {x}^{2}  +  {y}^{2}  - 16x = 0 \\  \\  \tt \circ \: given \: eqn \: of \: circle \\  \\  \text{So, \: it \: satisfy \: on \: stadard \: eqn} \\  \tt:  \implies  {x}^{2}  +  {y}^{2}  - 16x + 64-64= 0 \\\\ \tt{:\implies (x-8)^2+y^{2}-64} \\\\ \tt{:\implies (x-8)^2+y^{2}=64}\\\\ \bold{Where:}  \\  \tt \circ \:  g = 0 \\  \\  \tt  \circ \: f = 0 \\  \\  \tt \circ \: c =64 \\  \\  \bold{As \: we \: know \: that} \\  \\  \tt \circ Coordinate \: of \: centre  \\  \tt:  \implies x-8= 0 \\\\ \tt:\implies x=8  \\\\  \tt:  \implies y = 0 \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Radius =  \sqrt{ {g}^{2} +  {f}^{2} - c  }  \\  \\ \tt:  \implies Radius = \sqrt{0  +  0 -(-64)  }  \\  \\ \tt:  \implies Radius = \sqrt{64}  \\  \\  \green{\tt:  \implies Radius =8 \: units}

Similar questions