Math, asked by Anonymous, 8 hours ago

Topic : Definite integral as a limit of a sum

Evaluate :-

\boxed{\lim\limits_{x \to \infty} \left(\sum\limits_{n=1}^x \dfrac1 x \ln \left(\dfrac n x\right)\right)}

Answer along with explanation

Answers

Answered by mathdude500
31

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\lim\limits_{x \to \infty} \left(\sum\limits_{n=1}^x \dfrac1 x \ln \left(\dfrac n x\right)\right)

We know, using limit as a sum, it can be rewritten as

\rm :\longmapsto\:\lim\limits_{x \to \infty}\sum\limits \:  changes \: to \: sign \: of \:  \: \displaystyle\int

\rm :\longmapsto\:a \:  =  \: \lim\limits_{x \to \infty} \:  \dfrac{1}{x} \:   =  \: 0

\rm :\longmapsto\:b \:  =  \: \lim\limits_{x \to \infty} \:  \dfrac{x}{x} \:   =  \: 1

\rm :\longmapsto\:\dfrac{1}{x}  \: changes \: to \: dy

\rm :\longmapsto\:log\dfrac{n}{x} \: changes \: to \: logy

So, above expression can be rewritten as

\rm :\longmapsto\:\lim\limits_{x \to \infty} \left(\sum\limits_{n=1}^x \dfrac1 x \ln \left(\dfrac n x\right)\right) =  \: \displaystyle\int_0^1 \: logy \: dy

Let evaluate first

 \rm :\longmapsto\:\displaystyle\int \: logy \: dy

can be rewritten as

\rm \:  =  \: \displaystyle\int \:1. logy \: dy

Now, using integration by parts, we have

\boxed{\tt{\displaystyle\int \: uvdx \:  = u\displaystyle\int \: vdx \:  -  \: \displaystyle\int\bigg[\dfrac{d}{dx}u\displaystyle\int \: vdx \bigg] dx}}

So, here,

\rm :\longmapsto\:u = logy

\rm :\longmapsto\:v = 1

\rm \:  =  \: logy\displaystyle\int \: 1 \: dy - \displaystyle\int\bigg[\dfrac{d}{dy}logy\displaystyle\int \: 1dy \bigg]dy

\rm \:  =  \: y \: logy - \displaystyle\int \: \dfrac{1}{y} \times y \: dy

\rm \:  =  \: y \: logy - \displaystyle\int \: 1 \: dy

\rm \:  =  \: y \: logy - y

Therefore,

\rm :\longmapsto\: \: \displaystyle\int_0^1 \: logy \: dy

\rm \:  =  \: \bigg[y \: logy \:  -  \: y\bigg]_0^1

\rm \:  =  \: (log1 - 1) - (0 - 0)

\rm \:  =  \: (0 - 1)

\rm \:  =  \:  - 1

Hence,

\rm :\longmapsto\:\boxed{ \:  \: \tt{ \lim\limits_{x \to \infty} \left(\sum\limits_{n=1}^x \dfrac1 x \ln \left(\dfrac n x\right)\right) = -  1 \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions