Math, asked by LivetoLearn143, 1 month ago

Topic Differentiation

Only for Brainlystars or Moderators

If x = a cost and y = b sint, prove that d^2y/dx^2 = - b^4/a^2y^3​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x \:  =  \: a \: cost \:  -  -  - (1)

and

\rm :\longmapsto\:y \:  =  \: b \: sint \:  -  -  - (2)

So,

Differentiating (1), w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} x \:  =  \dfrac{d}{dt}\: a \: cost \:

\rm :\longmapsto\:\dfrac{dx}{dt}\:  = a \dfrac{d}{dt}\: \: cost \:

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}cosx =  - sinx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dx}{dt}\:  = -  \:  a  \: sint

Now,

On differentiating equation (2), w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} y \:  =  \dfrac{d}{dt}\: b \: sint \:

\rm :\longmapsto\:\dfrac{dy}{dt}\:  =b  \dfrac{d}{dt}\:\: sint \:

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}sinx =  cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dt}\:  =b \:   cost

Now,

We know that,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dy}{dt} \div \dfrac{dx}{dt}

\rm \:  =  \:  \: \dfrac{b \: cost}{ - a \: sint}

\rm \:  =  \:  \: -  \:  \dfrac{b }{  \: a \: }  \: cot \: t

\bf\implies \:\dfrac{dy}{dx} =  \:  \: -  \:  \dfrac{b }{  \: a \: }  \: cot \: t

Now, Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: \dfrac{dy}{dx} =  \:  \: -  \:  \dfrac{b }{  \: a \: } \dfrac{d}{dx} \: cot \: t

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } =  -  \: \dfrac{b}{a} {( - cosec}^{2}t)\dfrac{dt}{dx}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } =  \: \dfrac{b}{a} {cosec}^{2}t\times \dfrac{1}{ - a \: sint}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = -   \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {sin}^{2} t}  \times  \dfrac{1}{\: sint}

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = -   \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {sin}^{3} t}

As it is given that,

 \red{\rm :\longmapsto\:y \:  =  \: b \: sint \: \bf\implies \:sint = \dfrac{y}{b} }

So, on substituting this value, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = -   \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {\bigg(\dfrac{y}{b} \bigg) }^{3} }

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = -   \: \dfrac{b}{ {a}^{2} } \times \dfrac{ {b}^{3} }{ {y}^{3} }

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = -  \: \dfrac{ {b}^{4} }{ \:  \: {a}^{2}  \:  \: {y}^{3}  \:  \: }

Hence, Proved

Additional Information :-

\boxed{ \bf{ \: \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cotx =  { - \:  cosec}^{2}x}}

\boxed{ \bf{ \: \dfrac{d}{dx}cosecx =  -  \: cosecx \: cotx}}

\boxed{ \bf{ \: \dfrac{d}{dx}secx =   \: secx \: tanx}}

\boxed{ \bf{ \: \dfrac{d}{dx}k = 0}}

\boxed{ \bf{ \: \dfrac{d}{dx}x = 1}}

\boxed{ \bf{ \: \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } }}

\boxed{ \bf{ \: \dfrac{d}{dx}logx =  \frac{1}{x}}}

Answered by juwairiyahimran18
0

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:x \: = \: a \: cost \: - - - (1) \\  \\ and \\  \\ \rm :\longmapsto\:y \: = \: b \: sint \: - - - (2)

So,

Differentiating (1), w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} x \: = \dfrac{d}{dt}\: a \: cost  \\  \\ \rm :\longmapsto\:\dfrac{dx}{dt}\: = a \dfrac{d}{dt}\: \: cost

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}cosx = - sinx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dx}{dt}\: = - \: a \: sint

Now,

On differentiating equation (2), w. r. t. t, we get

\rm :\longmapsto\:\dfrac{d}{dt} y \: = \dfrac{d}{dt}\: b \: sint  \\  \\ \rm :\longmapsto\:\dfrac{dy}{dt}\: =b \dfrac{d}{dt}\:\: sint

We know,

\boxed{ \bf{ \: \dfrac{d}{dx}sinx = cosx}}

So, using this, we get

\rm :\longmapsto\:\dfrac{dy}{dt}\: =b \: cost

Now,

We know that,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{dy}{dt} \div \dfrac{dx}{dt} \\  \\ \rm \:  =  \:  \: \dfrac{b \: cost}{ - a \: sint}  \\  \\ \rm \:  =  \:  \: - \: \dfrac{b }{ \: a \: } \: cot \: t  \\  \\ \bf\implies \:\dfrac{dy}{dx} =  \:  \: - \: \dfrac{b }{ \: a \: } \: cot \: t

Now, Differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} \: \dfrac{dy}{dx} =  \:  \: - \: \dfrac{b }{ \: a \: } \dfrac{d}{dx} \: cot \: t \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{b}{a} {( - cosec}^{2}t)\dfrac{dt}{dx} \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = \: \dfrac{b}{a} {cosec}^{2}t\times \dfrac{1}{ - a \: sint} \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {sin}^{2} t} \times \dfrac{1}{\: sint} \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {sin}^{3} t}

As it is given that,

\red{\rm :\longmapsto\:y \: = \: b \: sint \: \bf\implies \:sint = \dfrac{y}{b} }

So, on substituting this value, we get

\rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{b}{ {a}^{2} } \times \dfrac{1}{ {\bigg(\dfrac{y}{b} \bigg) }^{3} } \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{b}{ {a}^{2} } \times \dfrac{ {b}^{3} }{ {y}^{3} } \\  \\ \rm :\longmapsto\:\dfrac{ {d}^{2}y }{ {dx}^{2} } = - \: \dfrac{ {b}^{4} }{ \: \: {a}^{2} \: \: {y}^{3} \: \: }

Hence, Proved .

Similar questions