Math, asked by Anonymous, 17 days ago

Topic - Differentiation

  \boxed{\sf \footnotesize Find \:  f'(x) \: when \: f(x) = \pi {e}^{sin(x + y)}  -  \dfrac{\pi}{4}}

Answers

Answered by amannscharlie
2
  • refer attachment for detailed answer
Attachments:
Answered by Anonymous
10

Refer to the attachment for your answer :)

Answer :-

 \quad \qquad \boxed{ \bf \pi \cdot e^{\sin ( x + y )} \cdot \cos(x+y)}

Used Concepts :-

  •   \bf \dfrac{d}{dx} ( Constant ) = 0

  •   \bf \dfrac{d}{dx} ( u \cdot v ) = u \cdot \dfrac{dv}{dx} + v \cdot \dfrac{du}{dx}

  •   \bf \dfrac{d}{dx} \{ \sin ( x ) \} = \cos ( x )

  • Chain Rule of Differentiation

Additional Information :-

  •  { \boxed { \tt { e = \displaystyle \tt  \lim_{ \tt n \to \infty } { \bigg ( \tt 1 + \dfrac{1}{n} \bigg )}^{n} }}}

Maclaurin Series :-

Binomial Expansion  \forall x² < 1

  •  { \boxed { \tt { \orange { {( 1 \pm x)}^{n} = 1 \pm \dfrac{nx}{1!} + \dfrac{n(n - 1)x²}{2!} + . . . . . . . }}}}

  •  { \boxed { \tt { \red { {( 1 \pm x)}^{- n} = 1 \mp \dfrac{nx}{1!} + \dfrac{n(n + 1)x²}{2!} +  . . . . . . . .  }}}}

Maclaurin Series of Sin x :-

  •  { \boxed { \tt { \orange { Sin x = x - \dfrac{x³}{3!} + \dfrac{x⁵}{5!} - . . . . . . . . . . }}}}

Maclaurin Series of Cos x :-

  •  { \boxed { \tt { \green { Cos x = 1 - \dfrac{x²}{2!} + \dfrac{x⁴}{4!} - . . . . . . . . . . }}}}

Maclaurin Series of tan x :-

  •  { \boxed { \tt { \blue { tan x = x + \dfrac{x³}{3} + \dfrac{2x⁵}{15} + . . . . . . . . . . }}}}

Maclaurin Series of  \bf e^{x} :-

  •  { \boxed { \tt { \green { e^{x} = 1 + x + \dfrac{x²}{2!} + \dfrac{x³}{3!} + . . . . . . . . }}}}

Maclaurin Series of  \tt {tan}^{ - 1 } x If & only  \tt { |x| \leqslant 1 } :-

  •  { \boxed { \tt { \orange { {tan}^{-1} x = x - \dfrac{x³}{3} + \dfrac{x⁵}{5} - . . . . . . . . . . }}}}

Commonly used Derivatives :-

  •  { \boxed { \tt { \red { \dfrac{d}{dx} ( x^{n} ) = n.{(x)^{(n-1)}} }}}}

  •  { \boxed { \tt { \orange { \dfrac{d}{dx} ( a^{x} ) = a^{x} . log ( a ) }}}}

  •  { \boxed { \tt { \blue { \dfrac{d}{dx} \bigg ( \dfrac{u}{v} \bigg ) = \dfrac{v . \dfrac{du}{dx} - u . \dfrac{dv}{dx}}{v²} }}}}

  •  { \boxed { \tt { \green { \dfrac{d}{dx} ( u.v ) = v . \dfrac{du}{dx} + u . \dfrac{dv}{dx} }}}}
Attachments:
Similar questions