Topic:- Functions Class XI and XII
Find the domain of the function:
Answers
Consider,
We know is defined for and So,
and,
Then domain of is,
The conditions to find domain of is so that
Consider,
Then,
and,
and,
Then domain of is,
But the domain is actually given as,
where is the inequality got as domain of [Signs in vary according to the brackets of interval] and is GCD of modulus of coefficients of in of
Here and So,
Consider,
Then,
and,
and,
Then domain of is,
Here and So,
Then domain of is,
In general is defined as factorial is also defined for non - negative real numbers but not integers, in terms of Gamma function.
Then domains of and should be and respectively, so the domain of should be,
Answer:
Consider,
\small\text{$\longrightarrow f_1(x)=\log_{x+\frac{1}{2}}\big|x^2-x-6\big|$}⟶f1(x)=logx+21∣∣∣x2−x−6∣∣∣
We know \small\text{$\log_ba$}logba is defined for \small\text{$a\in(0,\ \infty)$}a∈(0, ∞) and \small\text{$b\in(0,\ \infty)-\{1\}.$}b∈(0, ∞)−{1}. So,
\small\text{$\longrightarrow|x^2-x-6|\in(0,\ \infty)$}⟶∣x2−x−6∣∈(0, ∞)
\small\text{$\Longrightarrow x^2-x-6\neq0$}⟹x2−x−6=0
\small\text{$\longrightarrow(x-3)(x+2)\neq0$}⟶(x−3)(x+2)=0
\small\text{$\Longrightarrow x\in\mathbb{R}-\{-2,\ 3\}$}⟹x∈R−{−2, 3}
and,
\small\text{$\longrightarrow x+\dfrac{1}{2}\in(0,\ \infty)-\{1\}$}⟶x+21∈(0, ∞)−{1}
\small\text{$\longrightarrow x\in\left(-\dfrac{1}{2},\ \infty\right)-\left\{\dfrac{1}{2}\right\}$}⟶x∈(−21, ∞)−{21}
Then domain of f_1f1 is,
\small\text{$\longrightarrow x\in\bigg[\mathbb{R}-\{-2,\ 3\}\bigg]\cap\left[\left(-\dfrac{1}{2},\ \infty\right)-\left\{\dfrac{1}{2}\right\}\right]$}⟶x∈[R−{−2, 3}]∩[(−21, ∞)−{21}]
\small\text{$\longrightarrow x\in\left(-\dfrac{1}{2},\ \infty\right)-\left\{\dfrac{1}{2},\ 3\right\}$}⟶x∈(−21, ∞)−{21, 3}
The conditions to find domain of \small\text{$^n\!C_r$}nCr is \small\text{$n,\ r,\ n-r\in\mathbb{W}$}n, r, n−r∈W so that \small\text{$n,\ r,\ n-r\in[0,\ \infty).$}n, r, n−r∈[0, ∞).
Consider,
\small\text{$\longrightarrow f_2(x)=\,^{16-x}\!C_{_{2x-1}}$}⟶f2(x)=16−xC2x−1
Then,
\small\text{$\longrightarrow 16-x\in[0,\ \infty)$}⟶16−x∈[0, ∞)
\small\text{$\longrightarrow x\in(-\infty,\ 16]$}⟶x∈(−∞, 16]
and,
\small\text{$\longrightarrow 2x-1\in[0,\ \infty)$}⟶2x−1∈[0, ∞)
\small\text{$\longrightarrow x\in\left[\dfrac{1}{2},\ \infty\right)$}⟶x∈[21, ∞)
and,
\small\text{$\longrightarrow (16-x)-(2x-1)=17-3x\in[0,\ \infty)$}⟶(16−x)−(2x−1)=17−3x∈[0, ∞)
\small\text{$\longrightarrow x\in\left(-\infty,\ \dfrac{17}{3}\right]$}⟶x∈(−∞, 317]
Then domain of \small\text{$f_2$}f2 is,
\small\text{$\longrightarrow x\in(-\infty,\ 16]\cap\left[\dfrac{1}{2},\ \infty\right)\cap\left(-\infty,\ \dfrac{17}{3}\right]$}⟶x∈(−∞, 16]∩[21, ∞)∩(−∞, 317]
\small\text{$\longrightarrow x\in\left[\dfrac{1}{2},\ \dfrac{17}{3}\right]$}⟶x∈[21, 317]
But the domain is actually given as,
\small\text{$\longrightarrow x\in\left\{x:x=\dfrac{n}{k},\ n\in\mathbb{Z},\ a\leq n\leq b\right\}$}⟶x∈{x:x=kn, n∈Z, a≤n≤b}
where \small\text{$[a,\ b]$}[a, b] is the inequality got as domain of \small\text{$x$}x [Signs in \small\text{$a\leq n\leq b$}a≤n≤b vary according to the brackets of interval] and \small\text{$k$}k is GCD of modulus of coefficients of \small\text{$x$}x in \small\text{$n,\ r,\ n-r$}