Math, asked by RiskyRao45, 15 days ago

Topic Matrices

solve the question in attachment​

Attachments:

Answers

Answered by SparklingBoy
20

 \large \bf \clubs \:  Given  :-

 \sf{2A + 2B = \left[\begin{array}{cc}2&  - 1& 4 \\3 & 2 & 5\end{array}\right] } \\  \\ \sf{A + 2B = \left[\begin{array}{cc}5 & 0 & 3 \\1 & 6 & 2 \end{array}\right]}

 \large \bf \clubs \:   To  \: Find :-

  • Value of 2B .

 \large \bf \clubs \:  Solution :-

We Have,

 \pmb{2A + 2B = \left[\begin{array}{cc}2&  - 1& 4 \\3 & 2 & 5\end{array}\right] } \:  \:  -  -  -  - (1)\\  \\  \:  \:   \:  \:  \:\pmb{A + 2B = \left[\begin{array}{cc}5 & 0 & 3 \\1 & 6 & 2 \end{array}\right]} \:  \: -  -  -  - (2)

Multiplying Eq. (2) by 2 We Get :

 \pmb{2A + 4B = \left[\begin{array}{cc}10 & 0 & 6 \\2 & 12 & 4\end{array}\right]} \:  \:  -  -  -  - (3)

Subtracting (1) From (3) We Get :

 \sf \cancel{2A} + 4B -  \cancel{2A}  -2B  \\  = \left[\begin{array}{cc}10 & 0 & 6 \\ 2 & 12 & 4\end{array}\right] - \left[\begin{array}{cc}2 &  - 1 & 4 \\3 & 2 & 5\end{array}\right] \\  \\ :\longmapsto\sf2B = \left[\begin{array}{cc} 10- 2&   0+ 1& 6-  4 \\ 2- 3 &  12- 2 & 4 - 5\end{array}\right]  \\  \\

\purple{ \large :\longmapsto  \pmb{ \underline {\boxed{{2B = \left[\begin{array}{cc} 8&   1& 2 \\ - 1 & 10 &  - 1\end{array}\right]} }}}}

\underline{\underline{\Large\pink{\mathfrak{  \text{H}ence \:\:option\:\: B\:\: Correct} }}}

 \LARGE\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \Huge \red{\mathfrak{ \text{ A}nswer.}}

Answered by ltzheartcracer
4

We Have,

 \pmb{2A + 2B = \left[\begin{array}{cc}2&  - 1& 4 \\3 & 2 & 5\end{array}\right] } \:  \:  -  -  -  - (1)\\  \\  \:  \:   \:  \:  \:\pmb{A + 2B = \left[\begin{array}{cc}5 & 0 & 3 \\1 & 6 & 2 \end{array}\right]} \:  \: -  -  -  - (2)

Multiplying Eq. (2) by 2 We Get :

 \pmb{2A + 4B = \left[\begin{array}{cc}10 & 0 & 6 \\2 & 12 & 4\end{array}\right]} \:  \:  -  -  -  - (3)

Subtracting (1) From (3) We Get :

 \sf \cancel{2A} + 4B -  \cancel{2A}  -2B  \\  = \left[\begin{array}{cc}10 & 0 & 6 \\ 2 & 12 & 4\end{array}\right] - \left[\begin{array}{cc}2 &  - 1 & 4 \\3 & 2 & 5\end{array}\right] \\  \\ :\longmapsto\sf2B = \left[\begin{array}{cc} 10- 2&   0+ 1& 6-  4 \\ 2- 3 &  12- 2 & 4 - 5\end{array}\right]  \\  \\

\purple{ \large :\longmapsto  \pmb{ \underline {\boxed{{2B = \left[\begin{array}{cc} 8&   1& 2 \\ - 1 & 10 &  - 1\end{array}\right]} }}}}

Correct Option = B

Similar questions