Topic - Trigonometry✔️
Question- Attachment
Content Quality Required! ✔️
Answers
Answer:
1. In a right angled triangle ABC :-
∠B = 90°
tan A = 5/ 12
We know that, tan Ф = perpendicular(p)/ base(b)
tan A = p/ b
perpendicular in the given triangle is the side AB
and base is the side BC
tan A = AB/ BC
AB = perpendicular = 5
BC = base = 12
Using Pythagoras theorem :-
H² = P² + B²
H² = 5² + 12²
H² = 25 + 144
H² = 169
H = √169
H = 13 (h = hypotenuse)
AC = hypotenuse = 13
sin A = perpendicular/ hypotenuse
sin A= 5/ 13
Hence, option (2) sinA = 5/ 13 is correct
---------------------------------------------------------------------------------------------------
2. In a triangle :-
tan ∅ = 5/ 12
(from the above question we know that p = 5, b = 12, h = 13)
perpendicular = 5
base = 12
hypotenuse = 13
sec ∅ = hypotenuse/ base
= 13/ 5
cosec ∅ = hypotenuse/ perpendicular
= 13/ 12
sec∅ + cosec∅ = 13/ 5 + 13/ 12
= (13 x 5 + 13 x 12)/ 12 x 5
= (65 + 156)/ 60
= 221/ 60
Hence, option (2) 221/ 60 is correct
-----------------------------------------------------------------------------------------------------------
3. 4cot A = 3
cot A = 3/ 4
cot A = base/ perpendicular
hence, base = 3
perpendicular = 4
Using Pythagoras theorem :-
H² = P² + B²
H² = 4² + 3²
H² = 16 + 9
H² = 25
H = √25
H = 5 (h = hypotenuse)
sin A = perpendicular/ hypotenuse
= 4/ 5
cos A = base/ hypotenuse
= 3/ 5
=
=
= 7
Hence, option(1) 7 is correct
method II
dividing the eqn. with sin A :-
=
= (as cos A/ sin A = cot A)
=
=
= 7
Question 1 :
In a right angled triangle ABC, ∠B = 90° and tanA = 5/12, then?
1) cotA = 5/13 2) sinA = 5/13 3) sinA = -5/13 4) cosA = 13/5
Solution :
tanA = 5/12
∵ tanA = perpendicular/base
∴ Perpendicular of ΔABC = 5
∴ Base of ΔABC = 12
∴ Hypotenuse = √(12² + 5²)
⇒ Hypotenuse = √144 + 25
⇒ Hypotenuse = √169
⇒ Hypotenuse = 13
∴ cotA = 1/tanA = 1/(5/12) = 12/5
∴ 1st option is incorrect.
∵ sinA = perpendicular/hypotenuse
⇒ sinA = 5/13
∴ 2nd option (sinA = 5/13) is correct
[Note : Other options are also incorrect.]
________________________________
Question 2 :
If tanФ = 5/12 and Ф is an acute angle, then secФ + cosecФ = ?
1) 22/60 2) 221/60 3)22/7 4)None
Solution :
tanФ = 5/12
Perpendicular = 5
Base = 12
From pythagoras triplet, hypotenuse = 13
∵ secФ = hypotenuse/base
Also, cosecФ = hypotenuse/perpendicular
∴ secФ + cosecФ = 13/12 + 13/5
⇒ secФ + cosecФ = (65 + 156)/60
⇒ secФ + cosecФ = 221/60
∴ 2nd option (221/60) is correct.
______________________________________
Question 3 :
4cotA = 3, then value of (sinA + cosA)/(sinA - cosA) = ?
1) 7 2) 2/11 3) 1/2 4) 1
Solution :
4cotA = 3
∴ cotA = 3/4
∵ cotA = base/perpendicular
∴ Base = 3
And, perpendicular = 4
Now acc. to pythagorian triplet, hypotenuse = 5
∴ sinA = 4/5
∴ cosA = 3/5
Now given expression :
⇒ (sinA + cosA)/(sinA - cosA)
⇒ (4/5 + 3/5)/(4/5 - 3/5)
⇒ {(4 + 3)/5}/{(4 - 3)/5}
⇒ (7/5)/(1/5)
⇒ (7/5) × 5
⇒ 7
∴ Required value of the expression = 7
∴ 1st option (7) is correct.