Math, asked by Atlas99, 1 day ago

Topic - Volume and Surface Area
Class - 8
_______________________________
The total surface area of a solid cylinder is 9372 cm2. If its radius is 21 cm, find its height and volume.
_______________________________

Best answer will be marked as Brainliest!

Answers

Answered by Anonymous
94

Given :

  • Total Surface Area = 9372 cm²
  • Radius of Base = 21 cm

 \\ \rule{200pt}{3pt}

To Find :

  • Height of the Cylinder = ?
  • Volume of the Cylinder = ?

 \\ \rule{200pt}{3pt}

Solution :

~ Formula Used :

  • Total Surface Area :

 {\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ Total \; Surface \; Area{\small_{(Cylinder)}} = 2 \pi r \bigg\lgroup r + h \bigg\rgroup }}}}}

  • Volume :

 {\color{cyan}{\bigstar}} \; \; {\underline{\boxed{\red{\sf{ Volume{\small_{(Cylinder)}}  = \pi r²h }}}}}

Where :

  •  {\sf{ \pi = \dfrac{22}{7} }}
  • ➬ r = Radius
  • ➬ h = Height

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Height :

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ TSA = 2 \pi r \bigg\lgroup r + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 9372 = 2 \times \dfrac{22}{7} \times 21 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 9372 = 2 \times \dfrac{22}{7} \times 21 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 9372 = 2 \times \dfrac{22}{\cancel7} \times \cancel{21} \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 9372 = 2 \times 22 \times 3 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 9372 = 44 \times 3 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ \dfrac{9372}{44} = 3 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ \cancel\dfrac{9372}{44} = 3 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 213 = 3 \bigg\lgroup 21 + h \bigg\rgroup }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ \dfrac{213}{3} = 21 + h }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ \cancel\dfrac{213}{3} = 21 + h }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 71 = 21 + h }}} \\ \end{gathered}

 \begin{gathered} \; \dashrightarrow {\qquad{\sf{ 71 - 21 = h }}} \\ \end{gathered}

 {\qquad \; \; \; {\therefore \; {\underline{\boxed{\orange{\sf{ Height = 50 \; cm }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Calculating the Volume :

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = \pi r²h }}} \\ \end{gathered}

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = \dfrac{22}{7} \times {(21)}^{2} \times 50 }}} \\ \end{gathered}

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = \dfrac{22}{7} \times 21 \times 21 \times 50 }}} \\ \end{gathered}

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = \dfrac{22}{\cancel7}  \times \cancel{21} \times 21 \times 50 }}} \\ \end{gathered}

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = 22 \times 3 \times 21 \times 50 }}} \\ \end{gathered}

 \begin{gathered} \; \longmapsto {\qquad{\sf{ Volume = 66 \times 1050 }}} \\ \end{gathered}

 {\qquad \; \; \; {\therefore \; {\underline{\boxed{\purple{\sf{ Volume = 69300 \; {cm}^{3} }}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

~ Therefore :

❛❛ Height of the Cylinder is 50 cm and its Volume is 69300 cm³ . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Answered by ItzzTwinklingStar
61

Given:

  • Total Surface Area = 9372 cm²
  • Radius of Base = 21 cm

 \\

To Find:

  • Height of the Cylinder = ??
  • Volume of the Cylinder = ??

 \\

Formulae Used:

\\{\bigstar} \; \; {\underline {\boxed  {\purple{\bf{ Total \; Surface \; Area= 2 \pi r \bigg( r + h \bigg) }}}}}\\\\

{\bigstar} \; \; {\underline {\boxed  {\pink{\bf{Volume{\small_{(Cylinder)}}  = \pi r²h}}}}} \\\\

Solution:

★ Finding the height of cylinder by substituting the values in the formula :

\dashrightarrow {\sf{ TSA = 2 \pi r \bigg( r + h \bigg) }}\\\\

{ \sf{\dashrightarrow {9372 = 2 \times \dfrac{22}{7} \times 21 \bigg( 21 + h \bigg) }} }\\\\

{ \sf{\dashrightarrow {9372 = 2 \times \dfrac{22}{\cancel7} \times \cancel{21} \bigg( 21 + h \bigg)}} }\\\\

{ \sf{\dashrightarrow {9372 = 2 \times 22 \times 3 \bigg(21 + h \bigg) }} }\\\\

{ \sf{\dashrightarrow {9372 = 44 \times 3 \bigg( 21 + h \bigg) }} }\\\\

{ \sf{\dashrightarrow { \cancel\dfrac{9372}{44} = 3 \bigg( 21 + h \bigg)}} }\\\\

{ \sf{\dashrightarrow { 213 = 3 \bigg(21 + h \bigg)}} }\\\\

{ \sf{\dashrightarrow {  \cancel\dfrac{213}{3} = 21 + h}} }\\\\

{ \sf{\dashrightarrow {  71 = 21 + h}} }\\\\

{ \sf{\dashrightarrow {  71 - 21 = h}} }\\\\

{ \sf{\dashrightarrow {  h = 50 \: cm}} }\\\\

{\bigstar{\red{\underline{\boxed{\sf{Height = 50 \: cm}}}}}}\\\\

Hence, the height of cylinder is 50 cm.

 \\

★ Finding the volume of cylinder by substituting the values in the formula :

{ \sf{\dashrightarrow {  Volume = \pi r²h}} }\\\\

{ \sf{\dashrightarrow {  Volume = \dfrac{22}{7} \times {(21)}^{2} \times 50}} }\\\\

{ \sf{\dashrightarrow {  Volume = \dfrac{22}{7}  \times 21 \times 21 \times 50}} }\\\\

{ \sf{\dashrightarrow {  Volume = 22  \times 3 \times 21 \times 50}} }\\\\

{ \sf{\dashrightarrow {  Volume = 66 \times 1050}} }\\\\

{ \sf{\dashrightarrow {  69300 \; {cm}^{3} }} }\\\\

{\bigstar{\red{\underline{\boxed{\sf{volume = 69300 \: cm {}^{2} }}}}}}\\\\

Hence, the volume of cylinder is 69300 cm.

Similar questions