Physics, asked by anishbr280, 9 months ago

Torque of a force F = 10(î– k) acting on point (1,0,2) about a point (1,1,0) is?

Answers

Answered by Anonymous
11

AnswEr :

From the Question,

  • Force = 10(i - k) N

  • Final Position = (1,1,0) = ( i + j ) m

  • Initial Position = (1,0,2) = (i + 2k) m

We have to find the torque on the system

Firstly,

Displacement = Final Position - Initial Position

» Displacement = (i + j) - (i + 2k)

» Displacement = j - 2k

» r = ( j - 2k ) m

Now,

 \sf \tau \:  =  \vec{r}  \: \times  \vec{f} \\  \\  \longrightarrow \:  \sf \:  \tau = (0 \hat{i} +  \hat{j} - 2 \hat{k}) \times (10 \hat{i} +  0\hat{j} - 10 \hat{k}) \\  \\  \longrightarrow \:  \sf \:  \tau = 10 \hat{i} \hat{j} - 10 \hat{i} \hat{k} - 20 \hat{i} \hat{j} \\  \\  \longrightarrow \: \sf \tau = -10 \hat{i} \hat{j} - 10 \hat{i} \hat{k} \\  \\  \longrightarrow \sf \tau = -10(k) - 10(-j) \\  \\  \longrightarrow \:  \boxed{ \boxed{ \sf \tau =  10\hat{j} - 10 \hat{k} \: Nm}}

Torque acting on the system is 10(j - k) Nm

Similar questions