Total formula of circle chapter.
Answers
Answered by
3
r = ½d
radius formula
d = 2r
diameter formula
C = πd
circumference formula
m∠1 + m∠2 + m∠3 = 360
sum of central angles formula
A/360 = l/2πr
arc length formula
360°− the measure of the minor arc with the same endpoints
measure of major arc
m∠1 = ½x
measure of inscribed angle
opposite angles are supplementary (sum equals 180°)
angles in a quadrilateral inscribed in a circle
m∠1 = ½ (x+y)
measure of angle inside a circle
m∠1 = ½ (x-y)
measure of angle outside a circle
product of lengths of each chord are congruent
2 chords intersect
whole x outside = whole x outside
2 secants intersect outside a circle
if the 2 tangent segments are from the same exterior point, then they are congruent
2 tangent segments
whole × outside = tangent²
tangent and secant intersect outside a circle
radius formula
d = 2r
diameter formula
C = πd
circumference formula
m∠1 + m∠2 + m∠3 = 360
sum of central angles formula
A/360 = l/2πr
arc length formula
360°− the measure of the minor arc with the same endpoints
measure of major arc
m∠1 = ½x
measure of inscribed angle
opposite angles are supplementary (sum equals 180°)
angles in a quadrilateral inscribed in a circle
m∠1 = ½ (x+y)
measure of angle inside a circle
m∠1 = ½ (x-y)
measure of angle outside a circle
product of lengths of each chord are congruent
2 chords intersect
whole x outside = whole x outside
2 secants intersect outside a circle
if the 2 tangent segments are from the same exterior point, then they are congruent
2 tangent segments
whole × outside = tangent²
tangent and secant intersect outside a circle
apoorwaraj06:
Thanks
Answered by
2
hy
here is your answer
=================
➡r = ½d
radius formula
-----------------------
➡d = 2r
diameter formula
-----------------------
➡C = πd
circumference formula
-------------------------------
➡m∠1 + m∠2 + m∠3 = 360
sum of central angles formula
---------------------------------------
➡A/360 = l/2πr
arc length formula
-------------------------
➡360°− the measure of the minor arc with the same endpoints
measure of major arc
---------------------------
➡m∠1 = ½x
measure of inscribed angle
-----------------------------------
➡opposite angles are supplementary (sum equals 180°)
angles in a quadrilateral inscribed in a circle
-------------------------------
➡m∠1 = ½ (x+y)
measure of angle inside a circle
------------------------------
➡m∠1 = ½ (x-y)
measure of angle outside a circle
-------------------------------
➡ lengths of each chord are congruent
2 chords intersect
-------------------------
➡whole x outside = whole x outside
2 secants intersect outside a circle
---------------------------
➡if the 2 tangent segments are from the same exterior point, then they are congruent
----------------------------
2 tangent segments
------------------------------
➡whole × outside = tangent²
tangent and secant intersect outside a circle
---------------------------------
here is your answer
=================
➡r = ½d
radius formula
-----------------------
➡d = 2r
diameter formula
-----------------------
➡C = πd
circumference formula
-------------------------------
➡m∠1 + m∠2 + m∠3 = 360
sum of central angles formula
---------------------------------------
➡A/360 = l/2πr
arc length formula
-------------------------
➡360°− the measure of the minor arc with the same endpoints
measure of major arc
---------------------------
➡m∠1 = ½x
measure of inscribed angle
-----------------------------------
➡opposite angles are supplementary (sum equals 180°)
angles in a quadrilateral inscribed in a circle
-------------------------------
➡m∠1 = ½ (x+y)
measure of angle inside a circle
------------------------------
➡m∠1 = ½ (x-y)
measure of angle outside a circle
-------------------------------
➡ lengths of each chord are congruent
2 chords intersect
-------------------------
➡whole x outside = whole x outside
2 secants intersect outside a circle
---------------------------
➡if the 2 tangent segments are from the same exterior point, then they are congruent
----------------------------
2 tangent segments
------------------------------
➡whole × outside = tangent²
tangent and secant intersect outside a circle
---------------------------------
Similar questions