Math, asked by Chanugoel, 6 months ago

Total number of possible matrices of order 2x3 with each entry 1 or 0 is
(a) 6
(b) 36
(c) 32
(d) 64

Answers

Answered by itee123
0

Answer:

2*3=6..............answer

Answered by SparklingThunder
0

 \huge  \purple{ \underline{ \boxed{ \red{ \mathbb{ANSWER : }}}}}

 \red{ \textsf{The number of all possible matrices of order 2x3 with entry 1 or 0 are 64 .}}

 \huge  \purple{ \underline{ \boxed{ \red{ \mathbb{EXPLANATION : }}}}}

 \large \green{ \underline{ \underline{ \mathbb{GIVEN : }}}}

 \orange{ \textsf{A matrix with order 2 x 3 :}}

 \orange{\left[ \begin{array}{c c c} \bf{a11}&\bf{a12}& \bf{a13} \\ \bf{a21}&\bf{a22}&\bf{a23} \end{array}\right]}

 \orange{ \textsf{Having entries 1 and 0 .}}

 \large \green{ \underline{ \underline{ \mathbb{SOLUTION : }}}}

 \red{ \textsf{a11 can have two entries 1 and 0 .}} \\  \red{ \textsf{a12 can have two entries 1 and 0 .}} \\  \red{ \textsf{a13 can have two entries 1 and 0 .}} \\  \red{ \textsf{a21 can have two entries 1 and 0 .}} \\  \red{ \textsf{a22 can have two entries 1 and 0 .}} \\  \red{ \textsf{a23 can have two entries 1 and 0 .}}

 \red{ \textsf{Therefore , The number of all possible matrices of order 2 x 3 with entry 1 or 0 are :}}

 \red{ \longrightarrow{ \mathbb{2 \times 2 \times 2 \times 2 \times 2 \times 2}}}

\red{ \longrightarrow{ \mathbb{ {2}^{6} }}}

\red{ \longrightarrow{ \mathbb{64}}}

 \large \green{ \underline{ \underline{ \mathbb{KNOW   \: MORE : }}}}

  \orange{\mathbb{MATRIX : }}

A matrix is an rectangular array having 'm' number of rows and 'n' number of columns .

 \orange{ \mathbb{ORDER  \: OF  \: MATRIX :}}

A matrix having 'm' number of rows and 'n' number of columns is said to be matrix of order m x n .

Similar questions