Math, asked by niting1078, 9 months ago

total surface area of hemisphere is 942cm2 find its volume. (take pi=22/7)​

Answers

Answered by madhutiwari793
2

Answer:

Step-by-step explanation:

TSA of hemisphere = 3πr^2

3πr^2 =942

r^2 = 100 (approx)

r =10

Volume = 2/3πr^3

= 2095.23

Please mark BRAINIEST

Answered by silentlover45
3

\large\underline\pink{Given:-}

  • Total surface area of the hemisphere is 942 cm²

\large\underline\pink{To find:-}

  • Fine it's volume ....?

\large\underline\pink{Solutions:-}

\: \: \: \: \: \: \: \therefore \: \: Total \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  {3} \: \pi \: {r}^{2} .

\: \: \: \: \: \: \: \leadsto \: \: {3} \: \pi \: {r}^{2} \: \: = \: \: {942}

\: \: \: \: \: \: \: \leadsto \: \: {3} \: \times \: \frac{22}{7} \: \times \: {r}^{2} \: \: = \: \: {942}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{942} \: \times \: {7}}{{22} \: \times \: {3}}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{{314} \: \times \: {7}}{22}

\: \: \: \: \: \: \: \leadsto \: \: {r}^{2} \: \: = \: \: \frac{2198}{22}

\: \: \: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: \sqrt{99.90}

\: \: \: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: \sqrt{100}

\: \: \: \: \: \: \: \leadsto \: \: {r} \: \: = \: \: {10}

The radius of hemisphere is 10 cm.

\: \: \: \: \: \: \: \therefore \: \:  Volume \: \: of \: \: hemisphere \: \: = \: \:  \frac{2}{3} \: \pi \: {r}^{3} .

\: \: \: \: \: \: \: \leadsto \: \: \frac{2}{3} \: \times \: \frac{22}{7} \: \times \: {(10)}^{3}

\: \: \: \: \: \: \: \leadsto \: \:  \frac{44}{21} \: \times \: {1000}

\: \: \: \: \: \: \: \leadsto \: \:  \frac{44000}{21}

\: \: \: \: \: \: \: \leadsto \: \:  {2095.23} \: {cm}^{2}

\: \: \: \: \: \: \: Hence, \\ \: \: \: \: Volume \: \: of \: \: hemisphere \: \: is  \: \: {2095.23} \: {cm}^{2}.

\large\underline\pink{More \: \: Important:-}

  • \: \: \: \: \: \: \: \: \: Total \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  {3} \: \pi \: {r}^{2} .
  • \: \: \: \: \: \: \: \: \: Curved \: \: surface \: \: of \: \: hemisphere \: \: = \: \:  \frac{1}{2} \: \pi \: {r}^{2} .
  • \: \: \: \: \: \: \: \: \:  Volume \: \: of \: \: hemisphere \: \: = \: \:  \frac{2}{3} \: \pi \: {r}^{3} .

__________________________________

Similar questions