Math, asked by sushantsingrajput52, 8 months ago

total surface area of of a cuboid with dimension 3cm into x cm into 4cm is 94 cm square find the value of x and find its volume. please explain briefly ​

Answers

Answered by AdorableMe
32

\underline{\underline{\sf{   \color{red}{GIVEN:-}    }}}

Total surface area of of a cuboid with dimension 3 cm × x cm × 4 cm is 94 cm².

\underline{\underline{\sf{   \color{red}{TO\ FIND:-}    }}}

  • The value of x.
  • The volume of the cuboid.

\underline{\underline{\sf{   \color{red}{SOLUTION:-}    }}}

◘ We know for a cuboid,

\boxed{\bf{TSA=2(lb+lh+bh)}}

◘ Substituting the values :-

\sf{\longmapsto TSA=2(3\times x+x\times4+3\times4) }

\sf{\longmapsto 94=2(3x+4x+12)}

\sf{\longmapsto 94=2(7x+12)}

\sf{\longmapsto 94= 14x+24 }

\sf{\longmapsto 94-24=14x  }

\sf{\longmapsto 70=14x  }

\sf{\longmapsto x=\dfrac{70}{14}  }

\bf{\longmapsto x=  5}

∴ The value of x is 5 cm.

______________________

◘ We know for a cuboid,

\boxed{\bf{Volume=lbh}}

◘ Substituting the values :-

\sf{\longmapsto Volume=3\times x \times 4}

\sf{\longmapsto Volume=3\times5\times4}

\bf{\longmapsto Volume=60\ cm^3}

∴ The volume is 60 cm³.

Answered by VineetaGara
1

Given,

The total surface area of a cuboid = 94 Square centimeters

Dimensions of the cuboid: Lenght = L = 3cm

Breadth = B = x cm

Height = H =4cm

To find,

I) The value of x

II) Volume of the cuboid

Solution,

We can simply solve this mathematical problem using the following process:

As per the concepts of mensuration,

The volume of a cuboid

The volume of a cuboid = Lenght x Breadth x Height

The volume of a cuboid = Lenght x Breadth x Height= LBH

Also, the total surface area of a cuboid

the total surface area of a cuboid= TSA (cuboid) = 2 x (LB + BH + LH)

=> 94 cm^2 = 2 x (3x + 4x + 12) cm^2

=> 47 = 7x + 12

=> 7x = 35

=> x = 5 cm

Now, the volume of the cuboid is:

=LBH

= 3 cm x 5 cm x 4 cm

= 60 cubic centimeters = 60 cm^3

Hence, the value of x is 5 centimeters and the volume of the cuboid is 60 cm^3.

Similar questions