Math, asked by cuteanjalikunjooz, 11 months ago

Total surface of a cone is 628cm^2 and slant height is 17cm. Find the radius? ​

Answers

Answered by sshavan950
0

sjhduke dkjdhieeie kejejkejeiejeje ekkeheiejjeiekowow eiowjosdl do it yulou blloody kgoo

Answered by amitkumar44481
2

AnsWer :

Radius 25 Cm.

Given :

  • TSA of Cone is 628 Cm²
  • Slant height ( l ) is 17 Cm.

Formula :

 \tt\dagger \:  \:  \:  \:  \: TSA \:  of \: Cone =  \pi r(l + r)

 \tt\dagger \:  \:  \:  \:  \: CSA \:  of \: Cone =  \pi rl.

 \tt\dagger \:  \:  \:  \:  \: Volume \:  of \: Cone =\dfrac{1}{3}  \pi r^{2}h.

Solution :

 \tt \longmapsto 628 =   \pi  r(l + r).

 \tt \longmapsto 628 =  \pi r(17 + r)

 \tt \longmapsto  \dfrac{628}{ \pi} =  {r}^{2}  + 17r

 \tt \longmapsto  \frac{628 }{3.14}  =  {r}^{2}  + 17r.

 \tt \longmapsto 200 =  {r}^{2}  + 17r.

 \begin{array}{r | l} 2 & 200 \\ \cline{2-2} 2 & 100 \\ \cline{2-2} 2 & 50  \\ \cline{2-2} 5 & 25 \\ \cline{2-2} 5 & 5 \\ \cline{2-2}    &  1 \end{array}

 \tt\longmapsto  {r}^{2}  + 17r - 200 = 0.

 \tt\longmapsto  {r}^{2}   -  25r + 8r - 200 = 0.

 \tt\longmapsto r(r - 25) + 8(r - 25) = 0.

 \tt \longmapsto (r + 8)(r - 25) = 0.

\rule{90}1

Either,

 \tt \mapsto r + 8= 0.

 \tt \mapsto r =-8.

\rule{40}1

Or,

 \tt \mapsto r - 25= 0.

 \tt \mapsto r = 25.

\rule{90}1

Here, Ignore.

 \tt \mapsto \red{r \neq-8.}

 \tt  \red{Note : }The \: value \: of\:  \pi = 3.14

Therefore, the value of Radius of given Cone be 25 Cm.

Attachments:
Similar questions