TP and tq are the tangents to a circle with Centre O so that angle poq = 110°. then find angle PTO
Answers
Answered by
12
OP and OQ are radii of the circle to the tangents TP and TQ respectively.
∴ OP ⊥ TP and,
∴ OQ ⊥ TQ
∠OPT = ∠OQT = 90°
In quadrilateral POQT,
Sum of all interior angles = 360°
∠PTQ + ∠OPT + ∠POQ + ∠OQT = 360°
⇒ ∠PTQ + 90° + 110° + 90° = 360°
⇒ ∠PTQ = 70°
∠PTQ is equal to option (B) 70°.
Similar questions