Math, asked by tasneemnihal72, 1 year ago

traingle ABC =~ TRAINGLE DEF . if area of traingle ABC is 50 , find DEF​

Answers

Answered by nitishraj1407
1

Answer:

hey mates

this is your answer

Step-by-step explanation:

Here, ΔABC ~ ΔDEF

Here, ΔABC ~ ΔDEF\frac{BC}{EF}

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EF

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF}

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DF

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE}

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DE

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB Then,

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB Then,ar(ΔABC)/ ar(ΔDEF) = 50/x

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB Then,ar(ΔABC)/ ar(ΔDEF) = 50/xar(ΔABC) = ar(ΔDEF) ⇒ 50 = x

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB Then,ar(ΔABC)/ ar(ΔDEF) = 50/xar(ΔABC) = ar(ΔDEF) ⇒ 50 = x→ x = 50cm^{2}cm

Here, ΔABC ~ ΔDEF\frac{BC}{EF} EFBC = \frac{AC}{DF} DFAC = \frac{AB}{DE} DEAB Then,ar(ΔABC)/ ar(ΔDEF) = 50/xar(ΔABC) = ar(ΔDEF) ⇒ 50 = x→ x = 50cm^{2}cm 2

Similar questions