Physics, asked by thilakanamrutha13, 20 hours ago

Trajectory of a body in a projectile motion is given by y = x-x^2/80 and y are in meters. Find maximum height of the projectile.

Answers

Answered by MystifiedBoy
25

Answer:

Equation of Trajectory:

\footnotesize \longrightarrow \sf y = x \tan( \theta)  - \dfrac{gx^2}{ {2u}^{2} \cos^{2} ( \theta)  } \qquad...(i)

Given:

\footnotesize \longrightarrow \sf y = x  - \dfrac{x^2}{80  } \qquad...(ii)

Comparing equation (I) and (II) we have:

\footnotesize \longrightarrow \sf x= x \tan( \theta) \\

\footnotesize \longrightarrow \sf \tan( \theta) =  \dfrac{x}{x}  \\

\footnotesize \longrightarrow \sf \tan( \theta) =  1 \\

\footnotesize \longrightarrow \sf  \theta = \tan^{ - 1} (  1 )\\

\footnotesize \longrightarrow \underline{ \underline{ \sf  \theta = {45}^{ \circ}}} \\

Now simplify equation (I) :

\footnotesize \longrightarrow \sf y = x \tan( \theta)  - \dfrac{gx^2}{ {2u}^{2} \cos^{2} ( \theta)  }  \\

\footnotesize \longrightarrow \sf y = x \tan( \theta)  -  \bigg(\dfrac{gx^2}{ {2u}^{2} \cos^{2} ( \theta)  } \times  \dfrac{ \tan ( \theta) }{ \tan ( \theta) }   \bigg) \\

\footnotesize \longrightarrow \sf y = x \tan( \theta)  \bigg \{  1 -  \dfrac{xg}{2 {u}^{2}  { \cos }^{2} (\theta) \tan( \theta)  } \bigg \}\\

\footnotesize \longrightarrow \sf y = x \tan( \theta)  \bigg \{  1 -  \dfrac{xg}{2 {u}^{2}  { \sin }({ \theta}  )} \bigg \}\\

\footnotesize \longrightarrow \sf y = x \tan( \theta)  \bigg \{  1 -  \dfrac{x}{  R} \bigg \} \qquad...(iii)\\

By taking equation (ii) we have :

\footnotesize \longrightarrow \sf y = x  - \dfrac{x^2}{80  } \\

\footnotesize \longrightarrow \sf y = x \bigg(1  - \dfrac{x}{80} \bigg) \qquad... (iv)

Now, compare equation (iv) by equation (iii)

\footnotesize \longrightarrow \underline{ \underline{ \sf R =  80 \:m}}

By relationship between horizon range and maximum height :

\footnotesize \longrightarrow \sf H =  \dfrac{R \tan(\theta)}{4}

\footnotesize \longrightarrow \sf H =  \dfrac{80 \tan( {45}^{ \circ}) }{4}

\footnotesize \longrightarrow \sf H =  \dfrac{80  \times 1 }{4}

\footnotesize \longrightarrow \sf H =  \dfrac{80  \times 1 }{4}

\footnotesize \longrightarrow\underline{\boxed{\red{ \bf H =  20\: m}}}

Answered by knowledgemam8
4
  • please check the attached file

Attachments:
Similar questions