Math, asked by rumeysa7061, 10 months ago

transactional solution
pleasee

#umarım yaparsınız ​

Attachments:

Answers

Answered by tahseen619
6

32

Step-by-step explanation:

Given:

\sqrt[5]{27 {}^{(x - 2)} }  =  \sqrt[3] { {9}^{(x - 5)} }

To find:

The value of x

Solution:

#Tabii ki size yardımcı olacağım :)

This question is related to Laws of Indices.

So, We solve it by using the rules.

1st_Make the base exponent in smaller form i.e 25 = 5², 27 = 3³

2nd_ Splitting the variable and constant powers

i.e

 {5}^{(x + 2)}  =  {5}^{x} . {5}^{2}

Now,

\sqrt[5]{27 {}^{(x - 2)} }  =  \sqrt[3] { {9}^{(x - 5)} }  \\  \\   \sqrt[5]{ {3}^{3(x - 2)} }  =   \sqrt[3]{ {3}^{2(x - 5)} } \\  \\  \sqrt[5]{ {3}^{(3x - 6)} }   =  \sqrt[3]{ {3}^{(2x - 10)} }  \\  \\  { 3}^{ \{(3x - 6). \frac{1}{5} \} } ={ 3}^{ \{(2x - 10). \frac{1}{3} \} } \\  \\  {3}^{ \frac{3x}{5} }  . {3}^{ \frac{ - 6}{5} } = {3}^{ \frac{2x}{3} }  . {3}^{ \frac{ - 10}{3} } \\  \\  \frac{ {3}^{ \frac{ - 6}{5} } }{ {3}^{  \frac{ - 10}{3} } }   =  \frac{ {3}^{ \frac{2x}{3} } }{ {3}^{ \frac{3x}{5} } } \\  \\  {3}^{( \frac{ - 6}{5}  +  \frac{ 10}{3}) } =  {3}^{( \frac{2x}{3}  -  \frac{3x}{5}) }   \\  \\   {3}^{ (\frac{ - 6.3 + 10.5}{15} )} = 3 {}^{( \frac{5.2x - 3x.3}{15}) }   \\  \\ [\text{Eliminating the base from both sides}] \\  \\ \frac{ - 18 + 50}{15}  =  \frac{10x - 9x}{15} \\  \\   \frac{ 32}{\cancel{15}}  =  \frac{x}{ \cancel{15}} \\  \\ x = 32

Therefore, the required answer is 32.

{\underline{\blue{\text{ Some Important Laws of Indices}}}}

{a}^{n}.{a}^{m}={a}^{(n + m)}

{a}^{-1}=\dfrac{1}{a}

\dfrac{{a}^{n}}{ {a}^{m}}={a}^{(n-m)}

{({a}^{c})}^{b}={a}^{b\times c}={a}^{bc}

 {a}^{\frac{1}{x}}=\sqrt[x]{a}

[Where all variables are real and greater than 0]

Varification

See in the attachment.

Attachments:
Answered by Anonymous
0

Üzgünüm kardeşim like this...if u saw this like it...can u plz follow me

Similar questions