Math, asked by abhaykrishnamt1987, 7 months ago

Transform the equation 6/x + (x - 3) /5 = 2 into the standard dorm of quadratic equation

Answers

Answered by nilesh102
4

Solution:-

Standard form of quadratic equation is

ax² + bx + c = 0

Now,

{  \huge{\dashrightarrow{ \bf{ \frac{6}{x} +  \frac{(x - 3)}{5}   = 2}}}}

{  \huge{\dashrightarrow{ \bf{ \frac{6 \times 5}{x \times 5} +  \frac{(x - 3) \times x}{5 \times x}   = 2}}}}

{  \huge{\dashrightarrow{ \bf{ \frac{30}{ 5x} +  \frac{{x}^{2}  - 3x}{5 x}   = 2}}}}

{  \huge{\dashrightarrow{ \bf{ \frac{{x}^{2} - 3x  + 30}{ 5x}   = 2}}}}

Multiply both side by 5x, we get

{  \huge{\dashrightarrow{ \bf{ {{x}^{2} - 3x  + 30}  = 10 x}}}}

{  \huge{\dashrightarrow{ \bf{ {{x}^{2} - 3x  }   -  10 x + 30} = 0}}}

{  \huge{\dashrightarrow{ \bf{ {{x}^{2}   }   -  13 x + 30} = 0}}}

Hence, standard quadratic form of equation is x² - 13x + 30 = 0.

Similar questions