Physics, asked by XXWarLockxX1326, 1 year ago

Transformer efficiency problem when maximum load is not given va

Answers

Answered by sagar2042
0

In any electrical machine, 'loss' can be defined as the difference between input power and output power. An electrical transformer is an static device, hence mechanical losses (like windage or friction losses) are absent in it. A transformer only consists of electrical losses (iron losses and copper losses). Transformer losses are similar to losses in a DC machine, except that transformers do not have mechanical losses.

Losses in transformer are explained below -

(I) Core Losses Or Iron Losses

Eddy current loss and hysteresis loss depend upon the magnetic properties of the material used for the construction of core. Hence these losses are also known as core losses or iron losses.

Hysteresis loss in transformer: Hysteresis loss is due to reversal of magnetization in the transformer core. This loss depends upon the volume and grade of the iron, frequency of magnetic reversals and value of flux density. It can be given by, Steinmetz formula:

Wh= ηBmax1.6fV (watts)

where, η = Steinmetz hysteresis constant

V = volume of the core in m3

Eddy current loss in transformer: In transformer, AC current is supplied to the primary winding which sets up alternating magnetizing flux. When this flux links with secondary winding, it produces induced emf in it. But some part of this flux also gets linked with other conducting parts like steel core or iron body or the transformer, which will result in induced emf in those parts, causing small circulating current in them. This current is called as eddy current. Due to these eddy currents, some energy will be dissipated in the form of heat.

Answered by Krishnagar
0

The efficiency of transformer is defined as the ratio of useful power output to input power

Similar questions