Transforms the given equation xy = a in poplar coordinates
Answers
Answered by
0
SOLUTION
TO DETERMINE
Transform the given equation xy = a in Polar coordinates.
EVALUATION
Here the given equation is xy = a
Let ( r, θ) be the polar coordinates of the point whose cartesian coordinates are (x, y)
Then we have
x = r cos θ and y = r sin θ
Thus we have -
\sf{xy = a}xy=a
\sf{ \implies \: r \cos \theta.r \sin \theta= a}⟹rcosθ.rsinθ=a
\sf{ \implies \: {r}^{2} \sin \theta \cos \theta= a}⟹r
2
sinθcosθ=a
\sf{ \implies \: {r}^{2} (2\sin \theta \cos \theta)=2 a}⟹r
2
(2sinθcosθ)=2a
\sf{ \implies \: {r}^{2} \sin 2\theta =2 a}⟹r
2
sin2θ=2a
FINAL ANSWER
Hence the required polar form is
\sf{ \: {r}^{2} \sin 2\theta =2 a}r
2
sin2θ=2a
Similar questions