Math, asked by yohithsavanth, 8 months ago

triangle ABC and triangle PQR are similar and AB:PQ = 4:3. If the area of triangle ABC = 48 cm2 , then the area of triangle
PQR in square cm is A. 18 B. 27 C. 64 D. 36​

Answers

Answered by mysticd
5

 Given \: \triangle ABC \sim \triangle PQR \\and \: AB : PQ = 4 : 3

 Area \: of \: triangle \: ABC = 48 \: cm^{2}

 \red{ Area \: of \: triangle \: PQR = ? }

 \underline{\pink{ Proof: }}

 \triangle ABC \sim \triangle PQR

 \frac{AB}{PQ} = \frac{4}{3} \: --(1)

/* We know that , */

 \blue{\frac{Area\: of \: \triangle ABC}{Area\: of \: \triangle PQR} = \frac{AB^{2}}{PQ^{2}} }

 \implies \frac{48}{Area\: of \: \triangle PQR} = \Big(\frac{AB}{PQ}\Big)^{2}

 \implies \frac{48}{Area\: of \: \triangle PQR} = \Big(\frac{4}{3}\Big)^{2}

 \implies \frac{48}{Area\: of \: \triangle PQR} = \frac{16}{9}

 \implies Area \:of \: \triangle PQR = 48 \times \frac{9}{16}

 = 3 \times 9 \\= 27 \: cm^{2}

Therefore.

 Option \: \green { ( B ) } \: is \: correct

•••♪

Answered by sarthaklahamge
0

Answer:

sjtjtwkywkywlywlywlywlyepiv4kvyevwiybwotowtitqbaiyqiynbqtiqrvubotwbiwtitbwivtwitwv

Similar questions