Math, asked by grergregge, 3 months ago

Triangle ABC has an altitude BN which is 6 cm long. AN=9 cm and NC=4 cm. Show whether ABC is a right angled triangle. (Show all the working).

Attachments:

Answers

Answered by MяMαgıcıαη
131

Step by step explanation :

  • Here, we have triangle ABC with altitude BN which is 6 cm long. AN = 9 cm and NC = 4 cm. We had to show whether ABC is a right angled triangle.

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Using pythagoras in right angled ㅤㅤㅤ∆ABN and ∆BNC :

  • According to pythagoras theorem, (Hypotenuse)² = (Perpendicular)² + (Base)²

Therefore,

  • In ∆ABN :

\qquad\longrightarrow\:\sf (AB)^2 = (BN)^2 + (NA)^2

\qquad\longrightarrow\:\sf (AB)^2 = (6)^2 + (9)^2

\qquad\longrightarrow\:\sf (AB)^2 = 36 + 81

\qquad\longrightarrow\:\bf{(AB)^2 = \red{117\:cm}}\qquad \lgroup 1 \rgroup

  • In ∆BNC :

\qquad\longrightarrow\:\sf (BC)^2 = (NC)^2 + (BN)^2

\qquad\longrightarrow\:\sf (BC)^2 = (4)^2 + (6)^2

\qquad\longrightarrow\:\sf (BC)^2 = 16 + 36

\qquad\longrightarrow\:\bf{(BC)^2 = \red{52\:cm}}\qquad \lgroup 2 \rgroup

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Now,

Finding length of AC :

\qquad\leadsto\:\sf AC = NC + AN

\qquad\leadsto\:\sf AC = 4 + 9

\qquad\leadsto\:\bf{ AC = \red{13\:cm}}\qquad \lgroup 3 \rgroupㅤㅤㅤㅤㅤㅤ

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Verifying pythagoras theorem on ㅤㅤㅤ∆ABC :

\qquad\longrightarrow\:\sf (AC)^2 = (AB)^2 + (BC)^2\qquad \lgroup 4 \rgroup

From [1] , [2] and [3] , putting in [4] :

\qquad\longrightarrow\:\sf (13)^2 = 117 + 52

\qquad\longrightarrow\:\bf{\red{169} = \red{169}}

\qquad\qquad\therefore\underline{\textsf{\textbf{Hence,\:Verified!}}}

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Hence, ABC is a right angled triangle

Similar questions