Math, asked by afsarjodp, 10 months ago

triangle ABC in which angle A= 50°,angle B=60°,BC=4.5 cm and triangle DEF in which angle E=60°,EF=4.5 cm, angle F=70°. [HINT: angle C=180° - (angle A + angle B) = 70°]​

Answers

Answered by AditiHegde
8

triangle ABC in which angle A= 50°,angle B=60°,BC=4.5 cm and triangle DEF in which angle E=60°,EF=4.5 cm, angle F=70°.

We know that, "The sum of interior angles of a triangle is 180°"

In Δ ABC,

∠ A + ∠ B + ∠ C = 180°

50° + 60° + ∠ C = 180°

110° + ∠ C = 180°

∠ C = 180° - 110°

∠ C = 70°

In Δ DEF,

∠ D + ∠ E + ∠ F = 180°

∠ D + 60° + 70° = 180°

130° + ∠ D = 180°

∠ D = 180° - 130°

∠ D = 50°

In Δ ABC and Δ DEF

∠ B = ∠ E =  60°

BC = EF = 4.5 cm

∴ Δ ABC ~ Δ DEF

⇒ (ar Δ ABC) / (ar Δ DEF) = BC² / EF²

⇒ (ar Δ ABC) / (ar Δ DEF) = 4.5² / 4.5²

(ar Δ ABC) = (ar Δ DEF)

Answered by kyleplesha
0

Answer:

In Δ ABC,

∠ A + ∠ B + ∠ C = 180°

50° + 60° + ∠ C = 180°

110° + ∠ C = 180°

∠ C = 180° - 110°

∠ C = 70°

In Δ DEF,

∠ D + ∠ E + ∠ F = 180°

∠ D + 60° + 70° = 180°

130° + ∠ D = 180°

∠ D = 180° - 130°

∠ D = 50°

In Δ ABC and Δ DEF

∠ B = ∠ E =  60°

BC = EF = 4.5 cm

∴ Δ ABC ~ Δ DEF

⇒ (ar Δ ABC) / (ar Δ DEF) = BC² / EF²

⇒ (ar Δ ABC) / (ar Δ DEF) = 4.5² / 4.5²

∴ (ar Δ ABC) = (ar Δ DEF)

Similar questions