Triangle abc is a equilateral triangle such d is a point on bc in which bd =1/3 prove that 9 ad2 =7ab2
Answers
Answered by
3
Given: In an equilateral triangle ΔABC. The side BC is trisected at D such
that BD = (1/3) BC.
To prove: 9AD² = 7AB²
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equations (1) and (2), we obtain
⇒ AD² - AB² = DE² - BE²
⇒ AD² - AB² = (BE – BD)² - BE²
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4
( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB² + AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
⇒ 9AD² = 7AB²
._________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
that BD = (1/3) BC.
To prove: 9AD² = 7AB²
Construction: Draw AE ⊥ BC.
Proof :
In a ΔABC and ΔACE
AB = AC ( Given)
AE = AE ( common)
∠AEB = ∠AEC = 90°
∴ ΔABC ≅ ΔACE ( For RHS criterion)
BE = EC (By C.P.C.T)
BE = EC = BC / 2
In a right angled triangle ADE
AD² = AE² + DE² ---------(1)
In a right angled triangle ABE
AB² = AE² + BE² ---------(2)
From equations (1) and (2), we obtain
⇒ AD² - AB² = DE² - BE²
⇒ AD² - AB² = (BE – BD)² - BE²
⇒ AD² - AB² = (BC / 2 – BC/3)² – (BC/2)²
⇒ AD² - AB² = ((3BC – 2BC)/6)² – (BC/2)²
⇒ AD² - AB² = BC² / 36 – BC² / 4
( In a equilateral triangle ΔABC, AB = BC = CA)
⇒ AD² = AB² + AB² / 36 – AB² / 4
⇒ AD² = (36AB² + AB²– 9AB²) / 36
⇒ AD² = (28AB²) / 36
⇒ AD² = (7AB²) / 9
⇒ 9AD² = 7AB²
._________________________________________________________
☺☺☺ Hope this Helps ☺☺☺
Attachments:
nitthesh7:
if u find it as most helpful pls mark it as brainliest
Answered by
0
Attachments:
Similar questions