Math, asked by Anonymous, 2 days ago

triangle ABC is an equilateral triangle. Point P is on base BC such that PC=1/3BC. If AB=12cm, find AP

Answers

Answered by farhan55647fa
1

Answer:

△ABC is an equilateral triangle. Point P is on base BC. [ Given ]

pc =  \frac{1}{3} bc.ab = 6cm

[ Given ]

Here, PC= \frac{1}{3}  \times BC= \frac{1}{3}  \times 6

∴ PC=2cm

RC= \frac{1}{2} \times BC= \frac{1}{2}  \times 6

∴ RC=3cm

RP=RC−PC=3−2

∴ RP=1cm

⇒  Altitude AR= \frac{ \sqrt{3} }{2}  \times a

[ a=length of side ]

⇒  AR= \frac{ \sqrt{3} }{2}  \times 6 = 3 \sqrt{3}

Now, in △ARP,

(AP)² = (AR)² + (RB)²

AP=  \sqrt{(3 { \sqrt{3)} }^{2}  +  {(1)}^{2} }

AP= \sqrt{27 + 1}

∴  AP=2 \sqrt{7} cm

Attachments:
Similar questions