Triangle ABC is an isocelese triangle with AB=AC and AD is the altitudeof the triangle. Prove that AD is also the median of the triangle
Answers
Answered by
1
Answer:
hi
Step-by-step explanation:
Hence AD bisects angle A and hence AD is an angle bisector of the triangle ABC. Also, since AD is perpendicular to BC and AD bisects BC, AD is a perpendicular bisector of the triangle ABC. Hence AD is an altitude, a median, an angle bisector as well as a perpendicular bisector of the triangle ABC. Hence proved.
Answered by
4
Answer:
Hence AD bisects angle A and hence AD is an angle bisector of the triangle ABC. Also, since AD is perpendicular to BC and AD bisects BC, AD is a perpendicular bisector of the triangle ABC. Hence AD is an altitude, a median, an angle bisector as well as a perpendicular bisector of the triangle ABC. Hence proved.
Step-by-step explanation:
please follow I will again follow
Similar questions