Math, asked by abhaynaredi12, 1 year ago

Triangle abc is an isosceles triangle in which AB=AC. side BA is produced to D such that AD=AB. show that angle BCD is right angle

Answers

Answered by sahamanidipa
9
Angle ABC=ACB=x
Then angle ACD=ADC=y
Now,
Angle ABC+ACB+ACD+ADC=2(x+y)=180
=x+y=90
=BCD=90
PROVED
Attachments:
Answered by Anonymous
8

Hello mate ^_^

__________________________/\_

\bold\green{Solution:}

AB=AC         (Given)

It means that ∠DBC=∠ACB           (In triangle, angles opposite to equal sides are equal)     

Let ∠DBC=∠ACB=x         .......(1)

AC=AD          (Given)

It means that ∠ACD=∠BDC         (In triangle, angles opposite to equal sides are equal)     

Let ∠ACD=∠BDC=y           ......(2)

In ∆BDC, we have

∠BDC+∠BCD+∠DBC=180°     (Angle sum property of triangle)

⇒∠BDC+∠ACB+∠ACD+∠DBC=180°

Putting (1) and (2) in the above equation, we get

y+x+y+x=180°

⇒2x+2y=180°

⇒2(x+y)=180°

⇒(x+y)=180/2=90°

Therefore, ∠BCD=90°

hope, this will help you.☺

Thank you______❤

_____________________________❤

Attachments:
Similar questions