Math, asked by kartikkaushik2009, 3 months ago

Triangle ABC is right angled at A. AD is perpendicular to BC. IF AB=5 cm, BC = 13 cm and AC = 12 cm, Find the area of Triangle ABC. Also find the length of AD​

Attachments:

Answers

Answered by AadityaSingh01
5

Given:-

  • Side AB = 5 cm

  • Side BC = 13 cm

  • Side AC = 12 cm

To Find:-

  • Area of ΔABC.

  • Length of AD.

Solution:-

Here, All the sides of the triangle is given,

So, We use Heron's formula to find the area of triangle.

Heron's formula = \sqrt{S (S - a) (S - b) (S - c)}        where, S = \dfrac{a + b + c}{2}

                                                                       a, b and c are sides of triangle.

Now, Put the values in the formula,

At first, S = \dfrac{5 + 12 + 13}{2}   = 15

\sqrt{15 (15 - 5) (15 - 12) (15 - 13)}

\sqrt{15 (10) (3) (2)}

\sqrt{15 \times 10 \times 3 \times 2}

\sqrt{900}

⇒ 30 cm²

Hence, Area of ΔABC is 30 cm².

Now, Area of triangle = \dfrac{1}{2} \times base \times height

                      30 cm² = \dfrac{1}{2} \times 13 \ cm \times h

                        \dfrac{30 \times 2}{13} = h

                                h = 4.6 \ cm

Hence, Length of AD is 4.6 cm.

Some Important Terms:-

  • Area of Equilateral triangle = \dfrac{\sqrt{3}}{4} \times Side^{2}

  • Area of Square  = Side^{2}

  • Area of Rectangle = Length \times Breadth

Answered by abhishek917211
20

In \:  \:  \:  right  \:  \:  \: angles  \:  \: triangle  \\ BAC, \:  \:  AB=5cm \:  \:  and \\  AC=12cm \\ </p><p>Area \:  \:  \:   of  \ \\triangle  \\ =  \frac{1}{2}  \times  \:  \: base \times hight =  \frac{1}{2}  \times ab \times ac \\  =  &gt;  \frac{1}{2}  \times 5 \times 12 =   {30cm}^{2}  \\ now \: in \: triangle \:  \: abc \\ area \: of \: triangle \:  \: of \: abc =  \frac{1}{2}  \times bc \times ad \\  \\  =  &gt; 30 =  \frac{1}{2}  \times 13 \times ad \\  =  &gt; ad =  \frac{30 \times 2}{13}  =  \frac{60}{13}cm</p><p>

Similar questions