Math, asked by soumya489, 1 year ago

triangle abc is similar to triangle pqr and ar(abc)/ar(pqr)=196/361 then ab/ pq is

Answers

Answered by ihrishi
3

Step-by-step explanation:

Given: \triangle ABC  \: similar \:  \: \triangle  PQR \:  \\ hence, by \: area \: of \\ similar \: triangle \: theorem, \: we\:  have: \:  \\  \frac{A(\triangle ABC)}{A(\triangle PQR)}  = ( { \frac{AB}{PQ} })^{2}  \:  \\  \implies \:  \frac{196}{361}  = ( { \frac{AB}{PQ} })^{2}  \\  \implies \:  \sqrt{ \frac{196}{361} } =  { \frac{AB}{PQ} } \\  \implies { \frac{AB}{PQ} }  =  \frac{14}{19}

Similar questions