Math, asked by maitrypatel417, 3 months ago

Triangle ABC is the vertex A (5,1), B (-3,-3, -7) and C (7, -1), find its Parikendra.​

Answers

Answered by izaan3412
0

Answer:

utstxigxigcohclhcligdt

Step-by-step explanation:

p7ts6rs6ozoyfzljgjgcigx7rd7vh

Answered by susmita2891
1

\huge\mathbb\red{AnSwEr}

The circumcentre of∆ABC is (2,-4)

The circumcentre of∆ABC is (2,-4)The vertices of ∆ABC are A(5,1) B(-3,-7) and C(7,-1)

Circumcentre: It is point of intersection of perpendicular bisector of each sides of triangle.

# Midpoint\: of \:side\: AB\: at\: P, = (\frac{5-3}{2},\frac{1-7}{2})

Midpoint\: of\: side \:AB \:at \:P,\: =\:(1,-3)

Slope \:of \:line \:AB, \:m =\dfrac{-7-1}{-3-5}=1

Equation\: of \:perpendicular\: line \:bisector \:of\: AB\: passing\: through \:point \:P

\dfrac{-1}{1}(x-1)y+3= 1−1(x−1)

y=−x−2 ---------- (1)

# Midpoint\: of \:side \:BC \:at \:Q, =(\frac{7-3}{2},\frac{-1-7}{2})

Midpoint \:of \:side \:BC\: at \:Q, =(2,-4)

 Slope\: of \:line\: BC, \:m=\dfrac{-7+1}{7+3}=-\dfrac{3}{5}

Equation\: of \:perpendicular\: line \:bisector \:of\: BC\: passing\: through \:point \:Q

y+4=-\dfrac{5}{3}(x-2)

y=-\dfrac{5}{3}x-\dfrac{2}{3}------------(2)

Point \:of\: intersection\: of\: equation (1) \:and \:equation (2)\: is \:circumcentre\: of\: triangle.

Using \:substitution\: method:-

-\dfrac{5}{3}x-\dfrac{2}{3}=-x-2

x=2

Put \:x=2 \:into \:y=-x-2

y=-4

Similar questions