Math, asked by zikrashanna2694, 8 months ago

Triangle J K L is shown. Angle J K L is 120 degrees and angle K L J is 40 degrees. The length of K L is 2 and the length of J L is k. Law of sines: StartFraction sine (uppercase A) Over a EndFraction = StartFraction sine (uppercase B) Over b EndFraction = StartFraction sine (uppercase C) Over c EndFraction What is the approximate value of k? Use the law of sines to find the answer. 2.9 units 3.8 units 5.1 units 6.2 units

Answers

Answered by MaheswariS
2

\textbf{Given:}

\text{In $\triangle$JKL, $\angle{JKL}=120^{\circ}$, $\angle{KLJ}=40^{\circ}$, $JL=k$ and KL= 2 units}

\textbf{To find:}

\text{The approximate value of k}

\textbf{Solution:}

\textbf{Concept used:}

\textsf{Sine formula:}

\textsf{In triangle ABC,}

\mathsf{\displaystyle\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}}

\text{Applying Sine formula in $\triangle$JKL, we get}

\dfrac{KL}{sin\angle{KJL}}=\dfrac{JL}{sin\angle{JKL}}=\dfrac{KJ}{sin\angle{KLJ}}

\dfrac{2}{sin\,20^{\circ}}=\dfrac{k}{sin\,120^{\circ}}=\dfrac{KJ}{sin\,40^{\circ}}

\implies\dfrac{2}{sin\,20^{\circ}}=\dfrac{k}{sin\,120^{\circ}}

\implies\dfrac{2}{sin\,20^{\circ}}=\dfrac{k}{cos\,30^{\circ}}

\implies\dfrac{2}{sin\,20^{\circ}}=\dfrac{k}{\frac{\sqrt{3}}{2}}

\implies\dfrac{2}{sin\,20^{\circ}}=\dfrac{2k}{\sqrt{3}}

\implies\dfrac{1}{sin\,20^{\circ}}=\dfrac{k}{\sqrt{3}}

\implies\,k=\dfrac{\sqrt{3}}{sin\,20^{\circ}}

\implies\,k=\dfrac{1.732}{0.3420}

\implies\,k=5.0643

\implies\bf\,k=5.1\,\text{units}

\therefore\textbf{The approximate value of k is 5.1 units}

Find more:

In triangle abc angle abc = 90 degree and angle acb = 30 degree then find AB:AC

https://brainly.in/question/14086812

P is the circumcentre of an acute angled triangle ABC with circumradius R . midpoint of BC is D . show that the perimeter of ΔABC is 2R ( sin A + sin B + sinC )

https://brainly.in/question/15260661

Attachments:
Similar questions