Math, asked by amarlidavis, 7 months ago

Triangle JKL has vertices at the following coordinates: J(2, 2), K(-1, 3), and L(-2, -1). Determine whether or not triangle JKL is a right triangle. Show all calculations for full credit.

Answers

Answered by MaheswariS
4

\textbf{Given:}

\text{Vertices are J(2,2), K(-1,3) and L(-2,-1)}

\textbf{To determine:}

\text{JKL is a right angled triangle or not}

\textbf{Solution:}

\text{First, we find the sides of the triangle JKL}

\mathrm{JK=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathrm{JK=\sqrt{(2+1)^2+(2-3)^2}}

\mathrm{JK=\sqrt{3^2+(-1)^2}}

\mathrm{JK=\sqrt{9+1}=\sqrt{10}}

\mathrm{KL=\sqrt{(-1+2)^2+(3+1)^2}}

\mathrm{KL=\sqrt{1^2+4^2}}

\mathrm{KL=\sqrt{1+16}=\sqrt{17}}

\mathrm{JL=\sqrt{(2+2)^2+(2+1)^2}}

\mathrm{JL=\sqrt{4^2+3^2}}

\mathrm{JL=\sqrt{16+9}=\sqrt{25}=5}

\text{Now}

\mathrm{JK^2+JL^2}

\mathrm{=10+25}

\mathrm{=35}

\mathrm{{\neq}\;KL^2}

\implies\text{Sum of the square of two sides of the triangle}

\text{does not equal to square of the 3 rd side}

\therefore\textbf{Triangle JKL is not a right angled triangle}

Find more:

points A(3,0), B(a,-2)and C(4,-1) are vertices of triangle ABC right angled at vertex A. Find value of a

https://brainly.in/question/4290807

Answered by alexysheimsness75
0

Answer: not a right triangle.

Step-by-step explanation:

Similar questions