Math, asked by 7261903891arjun, 11 months ago

triangle PQR is a right angled triangle .Right angle at Q such that QR=b and ,
a=A(triangle PQR).
If QN is perpendicular to PR
then show that QN=\frac{2ab}{ \sqrt{ {b}^{4} } + 4 {a}^{2} }

Answers

Answered by RitaNarine
11

Given:

ΔPQR ,  Right angled at Q and  QR = b and Area of ΔPQR = a

QN is perpendicular to PR.

To Prove :

length of QN = 2ab/√b^{4} + 4a^{2}

Solution:

Consider ΔPQR

  • Area = \frac{1}{2}PQ.QR = a
  • 2a/QR = PQ

Therefore

  • PQ = 2a/b
  • Consider ∠R
  • tan ∠R = PQ/b = 2a/b²

  • Now consider ΔQNR
  • sin ∠R = QN/QR
  • QN = sin ∠R x QR = b x sin ∠R

  • sin∠R = opposite side / hypotenuse
  • sin ∠R = PQ/PR = \frac{\frac{2a}{b} }{\sqrt{b^{2} + (\frac{2a}{b} )^{2}  } } =  \frac{2a}{\sqrt{b^{4} + 4a^{2} } }

Therefore

  • QN = b x sin∠R = \frac{2ab}{\sqrt{b^{4} + 4a^{2}  } }

Attachments:
Answered by atharvmohol1144
1

Answer:

ΔPQR , Right angled at Q and QR = b and Area of ΔPQR = a

QN is perpendicular to PR.

To Prove :

length of QN = 2ab/√b^{4} + 4a^{2}b

4

+4a

2

Solution:

Consider ΔPQR

Area = \frac{1}{2}

2

1

PQ.QR = a

2a/QR = PQ

Therefore

PQ = 2a/b

Consider ∠R

tan ∠R = PQ/b = 2a/b²

Now consider ΔQNR

sin ∠R = QN/QR

QN = sin ∠R x QR = b x sin ∠R

sin∠R = opposite side / hypotenuse

sin ∠R = PQ/PR = \frac{\frac{2a}{b} }{\sqrt{b^{2} + (\frac{2a}{b} )^{2} } }

b

2

+(

b

2a

)

2

b

2a

= \frac{2a}{\sqrt{b^{4} + 4a^{2} } }

b

4

+4a

2

2a

Therefore

QN = b x sin∠R = \frac{2ab}{\sqrt{b^{4} + 4a^{2} } }

b

4

+4a

2

2ab

Similar questions