Math, asked by knowledge41111, 8 months ago

Triangle side of 20cm 24cm and 25 cm Then find the area how h​

Answers

Answered by Anonymous
40

ANSWER

\large\underline\bold{GIVEN,}

\sf\therefore taking\:A,B,C \: as \: a \:sides \: of\: a \: triangle,

\sf\dashrightarrow AB=20cm=a

\sf\dashrightarrow BC=24cm=b

\sf\dashrightarrow AC=25cm=c

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow \:AREA\:OF\:TRIANGLE

FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: \sqrt{s(s-a)(s-b)(s-c)}  \:\: \star}}}

WE KNOW,

\sf\dashrightarrow S= \dfrac{a+b+c}{2}

\sf\implies s= \dfrac{20+24+25}{2}

\sf\implies s= \dfrac{69}{2}

\sf\implies s=\cancel \dfrac{69}{2}

\sf\implies 34.5cm

\rm{\boxed{\bf{ \star\:\: s=34.5\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\dashrightarrow s=34.5

\sf\dashrightarrow 20cm=a

\sf\dashrightarrow 24cm=b

\sf\dashrightarrow 25cm=c

\sf\implies \sqrt{(34.5)(34.5-20)(34.5-24)(34.5-25)}

\sf\implies \sqrt{(34.5)(14.5)(10.5)(9.5)}

\sf\implies \sqrt{(500.25) \times (99.75)}

\sf\implies \sqrt{49899.8375}

\sf\implies \sqrt{49899.8375} cm^{2}

\sf\implies 223.38 cm^{-2}

\large{\boxed{\bf{ \star\:\: 223.38 cm^{-2} \:\: \star}}}

\large\underline\bold{HENCE,\:THE\:AREA\:OF\:TRIANGLE\:IS\: 223.38cm^{-2}}

__________________

Answered by Prajan84
1

Step-by-step explanation:

U CAN ANSWER THIS BY USING THE HERONS FORMULA

area \:  \sqrt{s(s - a)(s - b)(s - c)}

perimeter = 20 + 24 + 25 = 69

semi \: perimeter \: or \: s \:  =  \frac{69}{2}  = 34.5

 \sqrt{34.5(34.5 - 20)(34.5 - 24)(34.5 - 25)}

 \sqrt{34.5(14.5)(10.5)(9.5)}

 \sqrt{49899.9375}

 = 223.38 \:cm {s}^{ - 2}

Similar questions