Math, asked by devrukhkarvaishnavi2, 8 months ago

triangle XYZ, Y =90 degree, Z =60 degree, ZX =12 cm. Find YZ

Answers

Answered by nalinikolli99
1

Answer:

a+b+c+d=180^

90+60+12+d=180^

162+d=180^

d=180^-162

d=17^

Step-by-step explanation:

plz mark me as brainlist and me thank

Answered by MoodyCloud
5

Given:-

  • ∠Y of triangle XYZ is 90°.
  • ∠Z of triangle XYZ is 60°.
  • Side ZX is 12 cm.

⠀⠀⠀⠀⠀⠀

To find:-

  • Side YZ of triangle XYZ.

⠀⠀⠀⠀⠀⠀

Solution:-

⠀⠀⠀⠀⠀⠀

 \large \tt  \: cos \: θ =  \frac{Base}{Hypotenuse}

⠀⠀⠀⠀⠀⠀

 \implies \tt \: cos \: 60\degree =  \frac{Base}{Hypotenuse}  --(1)\\  \\

⠀⠀⠀⠀⠀⠀

☆ Base = YZ

☆ Hypotenuse = ZX = 12 cm

☆ Cos 60° =  \frac{1}{</strong><strong>2</strong><strong>}

⠀⠀⠀⠀⠀⠀

So, Put the values in equation (1)

 \implies \tt \:  \frac{1}{2}  =  \frac{YZ}{12}

  • Cross multiply

 \implies \tt \:  12 = 2 \times YZ

 \implies \tt \:  \frac{12}{2}  = YZ

 \implies \tt \:  6 = YZ

⠀⠀⠀⠀⠀⠀

Therefore, YZ is 6 cm.

____________________

More ratio's:-

 \large \tt \: sin \: θ =  \frac{Perpendicular}{Hypotenuse}

 \large \tt \: tan \: θ =  \frac{Perpendicular}{Base}

 \large \tt \: Cot \: θ =  \frac{Base}{Perpendicular}

 \large \tt \: cosec \: θ =  \frac{Hypotenuse}{Perpendicular}

 \large \tt sec\: θ =  \frac{Hypotenuse}{Base}

Attachments:
Similar questions