Math, asked by nachiketahegde6, 6 months ago

triangleABC is an isosceles triangle in which AB=AC side BA is produced to D such that AD=AB show that angle BCD is a right angle​

Answers

Answered by SHREYAStailung0004
0

Answer:

nale baaaaaaaaaàaaaaaaaaaaaaa

Answered by kavyasahaidln
1

Answer:

Step-by-step explanation:

In ΔABC,

AB = AC (Given)

⇒ ∠ACB = ∠ABC (Angles opposite to the equal sides are equal.)

In ΔACD,

AD = AB

⇒ ∠ADC = ∠ACD (Angles opposite to the equal sides are equal.)

Now,

In ΔABC,

∠CAB + ∠ACB + ∠ABC = 180°

⇒ ∠CAB + 2∠ACB = 180°

⇒ ∠CAB = 180° – 2∠ACB — (i)

Similarly in ΔADC,

∠CAD = 180° – 2∠ACD — (ii)

also,

∠CAB + ∠CAD = 180° (BD is a straight line.)

Adding (i) and (ii)

∠CAB + ∠CAD = 180° – 2∠ACB + 180° – 2∠ACD

⇒ 180° = 360° – 2∠ACB – 2∠ACD

⇒ 2∠ACB + 2∠ACD= 360-180

⇒ 2(∠ACB + ∠ACD) = 180°

⇒ ∠BCD = 90°

Similar questions