Math, asked by YourHelperAdi, 1 day ago

Tricky Puzzle :
A integer contains 110 digits such that any 10 consecutive digits have no repeating digits. Find the sum of all its digits. ​

Answers

Answered by user0888
90

\large\underline{\large\underline{\text{Clues}}}

The digits must satisfy the two conditions.

Each digit consists of a different one from 0, 1, …, 8, 9 in a pair of 10 numbers.

Every ten digits are equal.

\large\underline{\large\underline{\text{Explanation}}}

Let's find the sum of a pair consisting of 10 different digits.

\cdots\longrightarrow0+1+\cdots+8+9=\dfrac{1}{2}\times10\times9

\cdots\longrightarrow0+1+\cdots+8+9=45.

Every ten digits repeat 11 times, so the sum is,

\cdots\longrightarrow45\times11=495.

So, the answer is,

\cdots\longrightarrow\boxed{495.}

\large\underline{\large\underline{\text{Learn more}}}

Where a,d,l are the first term, common difference, last term, the arithmetic terms are,

\cdots\longrightarrow a,a+d,a+2d,\cdots,l-2d,l-d,l

Let S_{n} express the sum of n consecutive numbers,

\begin{aligned}S_{n}&=a+(a+d)+(a+2d)+\cdots+(l-2d)+(l-d)+l\\S_{n}&=l+(l-d)+(l-2d)+\cdots+(a+2d)+(a+d)+a\end{aligned}

\cdots\longrightarrow 2S_{n}=n(a+l)

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}n(a+l).}

Where a,n,l are the first term, number of terms, last term, the arithmetic series is,

\cdots\longrightarrow S_{n}=\dfrac{1}{2}n(a+l)

\cdots\longrightarrow S_{n}=\dfrac{1}{2}\{a+a+(n-1)d\}

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}\{2a+(n-1)d\}.}

Similar questions