Math, asked by XxHappiestWriterxX, 2 months ago

Trigeonometric Identities

Exercise 13 A

Question 30

(cos ∅ × cosec theta - sin ∅ × sec theta) / (cos ∅ + sin ∅) = cosec ∅ - sec ∅

Those who knows only they will answer​

Answers

Answered by premaboudh4
63

Answer:

proof

Step-by-step explanation:

cos.cosec-sin.sec/cos+sin

=cos.1/sin-sin.1/cos÷cos+sin

=cos^2-sin^2/sin.cos÷cos+sin

=cos^2-sin^2÷sin.cosxcos+sin

=cos-sin÷sinxcos

=cos÷sin.cos-sin÷sin.cos

=1/cos-1/sin

=cosec-sec

Answered by amitkumar44481
144

Correct Question :

 \dagger \:  \:  \:  \:  \:  \tt \dfrac{Cos\phi. \, Cosec\phi - Sin\phi .\, Sec\phi}{Cos\phi + Sin\phi} = Cosec\phi - Sec\phi

Taking LHS side.

\tt \longrightarrow \dfrac{Cos\phi. \, Cosec\phi - Sin\phi .\, Sec\phi}{Cos\phi + Sin\phi}

\tt \longrightarrow \dfrac{Cos\phi. \,  \frac{1}{Sin\phi}- Sin\phi .\, \frac{1}{Cos\phi}}{Cos\phi + Sin\phi}

  \tt  \longrightarrow \dfrac{\,  \frac{Cos\phi}{Sin\phi}- \frac{Sin\phi}{Cos\phi}}{Cos\phi + Sin\phi}

\tt \longrightarrow \dfrac{\,  \frac{Cos^2\phi - Sin^2\phi}{Sin\phi.Cos\phi}}{Cos\phi + Sin\phi}

\tt  \longrightarrow \dfrac{Cos^2\phi - Sin^2\phi}{(Sin\phi.Cos\phi) Cos\phi + Sin\phi }

\tt \longrightarrow \dfrac{Cos\phi - Sin\phi) \cancel{( Cos\phi  +  Sin\phi)} }{(Sin\phi.Cos\phi) \cancel{ (Cos\phi + Sin\phi )}} \\

 \tt \longrightarrow \dfrac{Cos\phi - Sin\phi}{Sin\phi.Cos\phi } \\

 \tt  \longrightarrow \dfrac{ \:  \:  \:  \:  \:  \:  \:  \:  \: \cancel{Cos\phi}^{ \:  \:  \:  \:  \:  \: 1}}{Sin\phi. \cancel{Cos\phi }}   - \dfrac{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \cancel{Sin\phi}^{ \:  \:  \:  \:  \:  1}}{ \cancel{Sin\phi}.Cos\phi }

 \tt  \longrightarrow \dfrac{{1}}{Sin\phi}   - \dfrac{  {1}}{ Cos\phi }

 \tt \longrightarrow Cosec\phi - Sec\phi.

Hence Proved.

Attachments:
Similar questions