Trigeonometric Identities
Exercise 13 A
Question 30
(cos ∅ × cosec theta - sin ∅ × sec theta) / (cos ∅ + sin ∅) = cosec ∅ - sec ∅
Answers
To prove:-
(cosθcosecθ - sinθsecθ)/(cosθ + sin θ)
= cosecθ - secθ
Solution:-
We know that :-
• cosec θ = 1/sinθ
• sec θ = 1/cosθ
________________________________
LHS :-
= [cosθcosecθ - sinθsecθ]/[cosθ + sinθ]
= [cosθ.1/sinθ - sinθ.1/cosθ]/[cosθ + sinθ]
= [cosθ/sinθ - sinθ/cosθ]/[cosθ + sinθ]
= [cos²θ - sin²θ]/[sinθcosθ(cosθ + sinθ)]
= [(cosθ - sinθ)]/[sinθcosθ]
= [cosθ/sinθcosθ] - [sinθ/sinθcosθ]
= [1/sinθ] - [1/cosθ]
= cosecθ - secθ
RHS :-
= cosecθ - secθ
∴ LHS = RHS proved!
Some Extra Information:-
Some basic identities are :-
→ sin²θ + cos²θ = 1
→ 1 + cot²θ = cosec²θ
→ tanθ × cotθ = 1
→ 1 + tan²θ = sec²θ
→ tanθ = sinθ/cosθ
→ cotθ = cosθ/sinθ
To prove:-
(cosθcosecθ - sinθsecθ)/(cosθ + sin θ)
= cosecθ - secθ
Solution:-
We know that :-
• cosec θ = 1/sinθ
• sec θ = 1/cosθ
________________________________
LHS :-
= [cosθcosecθ - sinθsecθ]/[cosθ + sinθ]
= [cosθ.1/sinθ - sinθ.1/cosθ]/[cosθ + sinθ]
= [cosθ/sinθ - sinθ/cosθ]/[cosθ + sinθ]
= [cos²θ - sin²θ]/[sinθcosθ(cosθ + sinθ)]
= [(cosθ - sinθ)]/[sinθcosθ]
= [cosθ/sinθcosθ] - [sinθ/sinθcosθ]
= [1/sinθ] - [1/cosθ]
= cosecθ - secθ
RHS :-
= cosecθ - secθ
∴ LHS = RHS proved!
Some Extra Information:-
Some basic identities are :-
→ sin²θ + cos²θ = 1
→ 1 + cot²θ = cosec²θ
→ tanθ × cotθ = 1
→ 1 + tan²θ = sec²θ
→ tanθ = sinθ/cosθ
→ cotθ = cosθ/sinθ